62 research outputs found
Using mobile group dynamics and virtual time to improve teamwork in large-scale collaborative virtual environments
Mobile group dynamics (MGDs) assist synchronous working in collaborative virtual environments (CVEs), and virtual time (VT) extends the benefits to asynchronous working. The present paper describes the implementation of MGDs (teleporting, awareness and multiple views) and VT (the utterances of 23 previous users were embedded in a CVE as conversation tags), and their evaluation using an urban planning task. Compared with previous research using the same scenario, the new MGD techniques produced substantial increases in the amount that, and distance over which, participants communicated. With VT participants chose to listen to a quarter of the conversations of their predecessors while performing the task. The embedded VT conversations led to a reduction in the rate at which participants traveled around, but an increase in live communication that took place. Taken together, the studies show how CVE interfaces can be improved for synchronous and asynchronous collaborations, and highlight possibilities for future research
Using teleporting, awareness and multiple views to improve teamwork in collaborative virtual environments
Mobile Group Dynamics (MGDs) are a suite of techniques that help people work together in large-scale collaborative virtual environments (CVEs). The present paper describes the implementation and evaluation of three additional MGDs techniques (teleporting, awareness and multiple views) which, when combined, produced a 4 times increase in the amount that participants communicated in a CVE and also significantly increased the extent to which participants communicated over extended distances in the CVE. The MGDs were evaluated using an urban planning scenario using groups of either seven (teleporting + awareness) or eight (teleporting + awareness + multiple views) participants. The study has implications for CVE designers, because it provides quantitative and qualitative data about how teleporting, awareness and multiple views improve groupwork in CVEs. Categories and Subject Descriptors (according to ACM CCS): C.2.4 [Computer-Communication Networks]: Distributed Systems – Distributed applications; H.1.2 [Models and Principles]: User/Machine Systems – Human
factors; Software psychology; H.5.1 [Information Interfaces and Presentation]: Multimedia Information Systems
– Artificial, augmented and virtual realities; H.5.3 [Information Interfaces and Presentation]: Group and Organization Interfaces – Collaborative computing; Computer-supported cooperative work; Synchronous interaction; I.3.7[Computer Graphics]: Three Dimensional Graphics and Realism – Virtual Realit
A transferability model for brittle fracture including constraint and ductile tearing effects: a probabilistic approach
Numerical investigation of 3-D constraint effects on brittle fracture in SE(B) and C(T) specimens
This investigation employs 3-D nonlinear finite element analyses to conduct an extensive parametric evaluation of crack front stress triaxiality for deep notch SE(B) and C(T) specimens and shallow notch SE(B) specimens, with and without side grooves. Crack front conditions are characterized in terms of J-Q trajectories and the constraint scaling model for cleavage fracture toughness proposed previously by Dodds and Anderson. The 3-D computational results imply that a significantly less strict size/deformation limit, relative to the limits indicated by previous plane-strain computations, is needed to maintain small-scale yielding conditions at fracture by a stress- controlled, cleavage mechanism in deep notch SE(B) and C(T) specimens. Additional new results made available from the 3-D analyses also include revised {eta}-plastic factors for use in experimental studies to convert measured work quantities to thickness average and maximum (local) J-values over the crack front
A Communication Task in HMD Virtual Environments: Speaker and Listener Movement Improves Communication
In this paper we present an experiment which investigates the influence of animated real-time self-avatars in immersive virtual environments on a communication task. Further we investigate the influence of 1st and 3rd person perspectives and the influence of tracked speaker and listener. We find that people perform best in our communication task when both the speaker and the listener have an animated self-avatar and when the speaker is in the 3rd person. The more people move the better they perform in the communication task. These results suggest that when two people in a virtual environment are animated then they do use gestures to communicate
Recommended from our members
Top-down versus bottom-up processing of influence diagrams in probabilistic analysis
Recent work by Phillips et al., and Selby et al., has shown that influence diagram methodology can be a useful analytical tool in reactor safety studies. An influence diagram is a graphical representation of probabilistic dependence within a system or event sequence. Bayesian statistics are employed to transform the relationships depicted in the influence diagram into the correct expression for a desired marginal probability (e.g. the top event). As with fault trees, top-down and bottom-up algorithms have emerged as the dominant methods for quantifying influence diagrams. Purpose of this paper is to demonstrate a potential error in employing the bottom-up algorithm when dealing with interdependencies. In addition, the computing efficiency of both methods is discussed
Recommended from our members
Sputtering calculations with the discrete ordinated method
The purpose of this work is to investigate the applicability of the discrete ordinates (S/sub N/) method to light ion sputtering problems. In particular, the neutral particle discrete ordinates computer code, ANISN, was used to calculate sputtering yields. No modifications to this code were necessary to treat charged particle transport. However, a cross section processing code was written for the generation of multigroup cross sections; these cross sections include a modification to the total macroscopic cross section to account for electronic interactions and small-scattering-angle elastic interactions. The discrete ordinates approach enables calculation of the sputtering yield as functions of incident energy and angle and of many related quantities such as ion reflection coefficients, angular and energy distributions of sputtering particles, the behavior of beams penetrating thin foils, etc. The results of several sputtering problems as calculated with ANISN are presented
Investigation of biological properties, double-stranded RNA patterns and antigen concentration in citrus species infected with citrus tristeza virus
- …