297 research outputs found
Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus Phanerochaete chrysosporium : Evidence for gene duplications and extensive gene clustering
BACKGROUND: Phanerochaete chrysosporium, the model white rot basidiomycetous fungus, has the extraordinary ability to mineralize (to CO(2)) lignin and detoxify a variety of chemical pollutants. Its cytochrome P450 monooxygenases have recently been implied in several of these biotransformations. Our initial P450 cloning efforts in P. chrysosporium and its subsequent whole genome sequencing have revealed an extraordinary P450 repertoire ("P450ome") containing at least 150 P450 genes with yet unknown function. In order to understand the functional diversity and the evolutionary mechanisms and significance of these hemeproteins, here we report a genome-wide structural and evolutionary analysis of the P450ome of this fungus. RESULTS: Our analysis showed that P. chrysosporium P450ome could be classified into 12 families and 23 sub-families and is characterized by the presence of multigene families. A genome-level structural analysis revealed 16 organizationally homogeneous and heterogeneous clusters of tandem P450 genes. Analysis of our cloned cDNAs revealed structurally conserved characteristics (intron numbers and locations, and functional domains) among members of the two representative multigene P450 families CYP63 and CYP505 (P450foxy). Considering the unusually complex structural features of the P450 genes in this genome, including microexons (2–10 aa) and frequent small introns (45–55 bp), alternative splicing, as experimentally observed for CYP63, may be a more widespread event in the P450ome of this fungus. Clan-level phylogenetic comparison revealed that P. chrysosporium P450 families fall under 11 fungal clans and the majority of these multigene families appear to have evolved locally in this genome from their respective progenitor genes, as a result of extensive gene duplications and rearrangements. CONCLUSION: P. chrysosporium P450ome, the largest known todate among fungi, is characterized by tandem gene clusters and multigene families. This enormous P450 gene diversity has evolved by extensive gene duplications and intragenomic recombinations of the progenitor genes presumably to meet the exceptionally high metabolic demand of this biodegradative group of basidiomycetous fungi in ecological niches. In this context, alternative splicing appears to further contribute to the evolution of functional diversity of the P450ome in this fungus. The evolved P450 diversity is consistent with the known vast biotransformation potential of P. chrysosporium. The presented analysis will help design future P450 functional studies to understand the underlying mechanisms of secondary metabolism and oxidative biotransformation pathways in this model white rot fungus
Comparative analysis of ESTs involved in grape responses to Xylella fastidiosa infection
BACKGROUND: The gram-negative bacterium Xylella fastidiosa (Xf) is the causal agent of Pierce's disease (PD) in grape as well as diseases of many fruit and ornamental plants. The current molecular breeding efforts have identified genetic basis of PD resistance in grapes. However, the transcriptome level characterization of the host response to this pathogen is lacking. RESULTS: Twelve tissue specific subtractive suppression hybridization (SSH) cDNA libraries derived from a time course sampling scheme were constructed from stems, leaves and shoots of PD resistant and susceptible sibling genotypes (V. rupestris Ă— V. arizonica) in response to Xf infection. A total of 5,794 sequences were obtained from these cDNA libraries from which 993 contigs and 949 singletons were derived. Using Gene Ontology (GO) hierarchy, the non-redundant sequences were classified into the three principal categories: molecular function (30%), cellular components (9%) and biological processes (7%). Comparative analysis found variations in EST expression pattern between infected and non-infected PD resistant and PD susceptible grape genotypes. Among the three tissues, libraries from stem tissues showed significant differences in transcript quality suggesting their important role in grape-Xylella interaction. CONCLUSION: This study constitutes the first attempt to characterize the Vitis differential transcriptome associated with host-pathogen interactions from different explants and genotypes. All the generated ESTs have been submitted to GenBank and are also available through our website for further functional studies
VitisExpDB: A database resource for grape functional genomics
<p>Abstract</p> <p>Background</p> <p>The family Vitaceae consists of many different grape species that grow in a range of climatic conditions. In the past few years, several studies have generated functional genomic information on different <it>Vitis </it>species and cultivars, including the European grape vine, <it>Vitis vinifera</it>. Our goal is to develop a comprehensive web data source for Vitaceae.</p> <p>Description</p> <p>VitisExpDB is an online MySQL-PHP driven relational database that houses annotated EST and gene expression data for <it>V. vinifera </it>and non-<it>vinifera </it>grape species and varieties. Currently, the database stores ~320,000 EST sequences derived from 8 species/hybrids, their annotation (BLAST top match) details and Gene Ontology based structured vocabulary. Putative homologs for each EST in other species and varieties along with information on their percent nucleotide identities, phylogenetic relationship and common primers can be retrieved. The database also includes information on probe sequence and annotation features of the high density 60-mer gene expression chip consisting of ~20,000 non-redundant set of ESTs. Finally, the database includes 14 processed global microarray expression profile sets. Data from 12 of these expression profile sets have been mapped onto metabolic pathways. A user-friendly web interface with multiple search indices and extensively hyperlinked result features that permit efficient data retrieval has been developed. Several online bioinformatics tools that interact with the database along with other sequence analysis tools have been added. In addition, users can submit their ESTs to the database.</p> <p>Conclusion</p> <p>The developed database provides genomic resource to grape community for functional analysis of genes in the collection and for the grape genome annotation and gene function identification. The VitisExpDB database is available through our website <url>http://cropdisease.ars.usda.gov/vitis_at/main-page.htm</url>.</p
Identification of a single-stranded DNA virus associated with citrus chlorotic dwarf disease, a new member in the family Geminiviridae
n/
PrimerSNP: a web tool for whole-genome selection of allele-specific and common primers of phylogenetically-related bacterial genomic sequences
<p>Abstract</p> <p>Background</p> <p>The increasing number of genomic sequences of bacteria makes it possible to select unique SNPs of a particular strain/species at the whole genome level and thus design specific primers based on the SNPs. The high similarity of genomic sequences among phylogenetically-related bacteria requires the identification of the few loci in the genome that can serve as unique markers for strain differentiation. PrimerSNP attempts to identify reliable strain-specific markers, on which specific primers are designed for pathogen detection purpose.</p> <p>Results</p> <p>PrimerSNP is an online tool to design primers based on strain specific SNPs for multiple strains/species of microorganisms at the whole genome level. The allele-specific primers could distinguish query sequences of one strain from other homologous sequences by standard PCR reaction. Additionally, PrimerSNP provides a feature for designing common primers that can amplify all the homologous sequences of multiple strains/species of microorganisms. PrimerSNP is freely available at <url>http://cropdisease.ars.usda.gov/~primer</url>.</p> <p>Conclusion</p> <p>PrimerSNP is a high-throughput specific primer generation tool for the differentiation of phylogenetically-related strains/species. Experimental validation showed that this software had a successful prediction rate of 80.4 – 100% for strain specific primer design.</p
Comparative phylogenomics and multi-gene cluster analyses of the Citrus Huanglongbing (HLB)-associated bacterium Candidatus Liberibacter
<p>Abstract</p> <p>Background</p> <p>Huanglongbing (HLB, previously known as citrus greening), is associated with <it>Candidatus </it>Liberibacter species and is a serious threat to citrus production world-wide. The pathogen is a Gram negative, unculturable, phloem-limited bacterium with limited known genomic information. Expanding the genetic knowledge of this organism may provide better understanding of the pathogen and possibly develop effective strategies for control and management of HLB.</p> <p>Results</p> <p>Here, we report cloning and characterization of an additional 14.7 Kb of new genomic sequences from three different genomic regions of the <it>Candidatus </it>Liberibacter asiaticus (Las). Sequence variation analyses among the available <it>Ca</it>. Liberibacter species sequences as well as the newly cloned 1.5 Kb of <it>rpo</it>B gene from different <it>Ca</it>. Liberibacter strains have identified INDELs and SNPs. Phylogenetic analysis of the deduced protein sequences from the cloned regions characterizes the HLB-associated <it>Candidatus </it>Liberibacter as a new clade in the sub-division of the α-proteobacteria.</p> <p>Conclusion</p> <p>Comparative analyses of the cloned gene regions of <it>Candidatus </it>Liberibacter with members of the order Rhizobiales suggest overall gene structure and order conservation, albeit with minor variations including gene decay due to the identified pseudogenes. The newly cloned gene regions contribute to our understanding of the molecular aspects of genomic evolution of <it>Ca</it>. Liberibacter.</p
Somatic Mutations of Esophageal Adenocarcinoma: A Comparison Between Black and White Patients
Esophageal adenocarcinoma is the most common histological subtype of esophageal cancer in Western countries and shows poor prognosis with rapid growth. EAC is characterized by a strong male predominance and racial disparity. EAC is up to fivefold more common among Whites than Blacks, yet Black patients with EAC have poorer survival rates. The racial disparity remains largely unknown, and there is limited knowledge of mutations in EAC regarding racial disparities. We used whole-exome sequencing to show somatic mutation profiles derived from tumor samples from 18 EAC male patients. We identified three molecular subgroups based on the pre-defined esophageal cancer-specific mutational signatures. Group 1 is associated with age and NTHL1 deficiency-related signatures. Group 2 occurs primarily in Black patients and is associated with signatures related to DNA damage from oxidative stress and NTHL1 deficiency-related signatures. Group 3 is associated with defective homologous recombination-based DNA often caused by BRCA mutation in White patients. We observed significantly mutated race related genes (LCE2B in Black, SDR39U1 in White) were (q-value \u3c 0.1). Our findings underscore the possibility of distinct molecular mutation patterns in EAC among different races. Further studies are needed to validate our findings, which could contribute to precision medicine in EAC
Recommended from our members
Genomic Profiling of Childhood Tumor Patient-Derived Xenograft Models to Enable Rational Clinical Trial Design.
Accelerating cures for children with cancer remains an immediate challenge as a result of extensive oncogenic heterogeneity between and within histologies, distinct molecular mechanisms evolving between diagnosis and relapsed disease, and limited therapeutic options. To systematically prioritize and rationally test novel agents in preclinical murine models, researchers within the Pediatric Preclinical Testing Consortium are continuously developing patient-derived xenografts (PDXs)-many of which are refractory to current standard-of-care treatments-from high-risk childhood cancers. Here, we genomically characterize 261 PDX models from 37 unique pediatric cancers; demonstrate faithful recapitulation of histologies and subtypes; and refine our understanding of relapsed disease. In addition, we use expression signatures to classify tumors for TP53 and NF1 pathway inactivation. We anticipate that these data will serve as a resource for pediatric oncology drug development and will guide rational clinical trial design for children with cancer
Inter and Intra-Host Diversity of Rsv in Hematopoietic Stem Cell Transplant Adults With Normal and Delayed Viral Clearance
Respiratory syncytial virus (RSV) infection in immunocompromised individuals often leads to prolonged illness, progression to severe lower respiratory tract infection, and even death. How the host immune environment of the hematopoietic stem cell transplant (HCT) adults can affect viral genetic variation during an acute infection is not understood well. In the present study, we performed whole genome sequencing of RSV/A or RSV/B from samples collected longitudinally from HCT adults with normal (\u3c14 \u3edays) and delayed (≥14 days) RSV clearance who were enrolled in a ribavirin trial. We determined the inter-host and intra-host genetic variation of RSV and the effect of mutations on putative glycosylation sites. The inter-host variation of RSV is centered in the attachment (G) and fusion (F) glycoprotein genes followed by polymerase (L) and matrix (M) genes. Interestingly, the overall genetic variation was constant between normal and delayed clearance groups for both RSV/A and RSV/B. Intra-host variation primarily occurred in the G gene followed by non-structural protein (NS1) and L genes; however, gain or loss of stop codons and frameshift mutations appeared only in the G gene and only in the delayed viral clearance group. Potential gain or loss of O-linked glycosylation sites in the G gene occurred both in RSV/A and RSV/B isolates. For RSV F gene, loss of N-linked glycosylation site occurred in three RSV/B isolates within an antigenic epitope. Both oral and aerosolized ribavirin did not cause any mutations in the L gene. In summary, prolonged viral shedding and immune deficiency resulted in RSV variation, especially in structural mutations in the G gene, possibly associated with immune evasion. Therefore, sequencing and monitoring of RSV isolates from immunocompromised patients are crucial as they can create escape mutants that can impact the effectiveness of upcoming vaccines and treatments
Longitudinal Host Transcriptional Responses to SARS-CoV-2 Infection in Adults With Extremely High Viral Load
Current understanding of viral dynamics of SARS-CoV-2 and host responses driving the pathogenic mechanisms in COVID-19 is rapidly evolving. Here, we conducted a longitudinal study to investigate gene expression patterns during acute SARS-CoV-2 illness. Cases included SARS-CoV-2 infected individuals with extremely high viral loads early in their illness, individuals having low SARS-CoV-2 viral loads early in their infection, and individuals testing negative for SARS-CoV-2. We could identify widespread transcriptional host responses to SARS-CoV-2 infection that were initially most strongly manifested in patients with extremely high initial viral loads, then attenuating within the patient over time as viral loads decreased. Genes correlated with SARS-CoV-2 viral load over time were similarly differentially expressed across independent datasets of SARS-CoV-2 infected lung and upper airway cells, from both in vitro systems and patient samples. We also generated expression data on the human nose organoid model during SARS-CoV-2 infection. The human nose organoid-generated host transcriptional response captured many aspects of responses observed in the above patient samples, while suggesting the existence of distinct host responses to SARS-CoV-2 depending on the cellular context, involving both epithelial and cellular immune responses. Our findings provide a catalog of SARS-CoV-2 host response genes changing over time and magnitude of these host responses were significantly correlated to viral load
- …