6 research outputs found

    Energy-Level Alignment at the Interface of Graphene Fluoride and Boron Nitride Monolayers: An Investigation by Many-Body Perturbation Theory

    No full text
    Energy-level alignment at interfaces is important for understanding and optimizing optoelectronic and photocatalytic properties. In this work, we study the level alignment at the interface between graphene fluoride and boron nitride monolayers. These two-dimensional (2D) semiconductors are representative wide-bandgap components for van der Waals (vdW) heterostructures. We perform a systematic study on the structural and electronic properties of their interface, by using density functional theory and the <i>G</i><sub>0</sub><i>W</i><sub>0</sub> method of many-body perturbation theory. We adopt this interface as a prototypical system to investigate the impact of polarization effects on band gap and level alignment. We find a small but still notable polarization-induced reduction of the materials’ band gap by 250 meV that we interpret and analyze in terms of an image-potential model. Such effects stem from nonlocal correlations between electrons and cannot be captured by semilocal or standard hybrid density functionals. Our work provides a lower limit of band-gap renormalization in 2D systems caused by polarization effects, and demonstrates the importance of many-body perturbation theory for a reliable prediction of energy-level alignment in 2D vdW heterojunctions

    Organic/Inorganic Hybrid Materials: Challenges for <i>ab Initio</i> Methodology

    No full text
    ConspectusOrganic/inorganic hybrid structures are most exciting since one can expect new properties that are absent in either of their building blocks. They open new perspectives toward the design and tailoring of materials with desired features and functions. Prerequisite for real progress is, however, the in-depth understanding of what happens on the atomic and electronic scale. In this respect, hybrid materials pose a challenge for electronic-structure theory. Methods that proved useful for describing one side may not be applicable for the other one, and they are likely to fail for the interfaces.In this Account, we address the question to what extent we can quantitatively describe hybrid materials and where we even miss a qualitative description. We note that we are dealing with extended systems and thus adopt a solid-state approach. Therefore, density-functional theory (DFT) and many-body perturbation theory (MBPT), the <i>GW</i> approach for charged and the Bethe–Salpeter equation for neutral excitations, are our methods of choice. We give a brief summary of the used methodology, focusing on those aspects where problems can be expected when materials of different character meet at an interface. These issues are then taken up when discussing hybrid materials. We argue when and why, for example, <i>standard</i> DFT may fall short when it comes to the electronic structure of organic/metal interfaces or where the framework of MBPT can or must take over.Selected examples of organic/inorganic interfaces, structural properties, electronic bands, optical excitation spectra, and charge-transport properties as obtained from DFT and MBPT highlight which properties can be reliably computed for such materials. The crucial role of van der Waals forces is shown for sexiphenyl films, where the subtle interplay between intermolecular and molecule–substrate interactions is decisive for growth and morphologies. With a PTCDA monolayer on metal surfaces we discuss the performance of DFT in terms of interfacial electronic structure. We face the problem of a so far <i>hidden variable</i>, namely, electron-vibrational coupling, regarding level alignment at interfaces between organic and inorganic semiconductors. Poly­(<i>para</i>-phenylene) adsorbed on graphene and encapsulated in carbon nanotubes represent case studies to demonstrate the impact of polarization effects and exciton delocalization in optoelectronic excitations, respectively. Polaron-induced band narrowing and its consequences for charge transport in organic crystals is exemplified for the HOMO bandwidth in naphthalene crystals. On the basis of these prototypical systems, we discuss what is missing to reach predictive power on a quantitative level for organic/inorganic hybrid materials and, thus, open a perspective toward the computational discovery of new materials for optoelectronic applications

    Enhanced Light–Matter Interaction in Graphene/h-BN van der Waals Heterostructures

    No full text
    By investigating the optoelectronic properties of prototypical graphene/hexagonal boron nitride (h-BN) heterostructures, we demonstrate how a nanostructured combination of these materials can lead to a dramatic enhancement of light–matter interaction and give rise to unique excitations. In the framework of ab initio many-body perturbation theory, we show that such heterostructures absorb light over a broad frequency range, from the near-infrared to the ultraviolet (UV), and that each spectral region is characterized by a specific type of excitations. Delocalized electron–hole pairs in graphene dominate the low-energy part of the spectrum, while strongly bound electron–hole pairs in h-BN are preserved in the near-UV. Besides these features, characteristic of the pristine constituents, charge-transfer excitations appear across the visible region. Remarkably, the spatial distribution of the electron and the hole can be selectively tuned by modulating the stacking arrangement of the individual building blocks. Our results open up unprecedented perspectives in view of designing van der Waals heterostructures with tailored optoelectronic features

    Electric-Magneto-Optical Kerr Effect in a Hybrid Organic–Inorganic Perovskite

    No full text
    Hybrid organic–inorganic compounds attract a lot of interest for their flexible structures and multifunctional properties. For example, they can have coexisting magnetism and ferroelectricity whose possible coupling gives rise to magnetoelectricity. Here using first-principles computations, we show that, in a perovskite metal–organic framework (MOF), the magnetic and electric orders are further coupled to optical excitations, leading to an Electric tuning of the Magneto-Optical Kerr effect (EMOKE). Moreover, the Kerr angle can be switched by reversal of both ferroelectric and magnetic polarization only. The interplay between the Kerr angle and the organic–inorganic components of MOFs offers surprising unprecedented tools for engineering MOKE in complex compounds. Note that this work may be relevant to acentric magnetic systems in general, e.g., multiferroics

    Epitaxy of Rodlike Organic Molecules on Sheet SilicatesA Growth Model Based on Experiments and Simulations

    No full text
    During the last years, self-assembled organic nanostructures have been recognized as a proper fundament for several electrical and optical applications. In particular, phenylenes deposited on muscovite mica have turned out to be an outstanding material combination. They tend to align parallel to each other forming needlelike structures. In that way, they provide the key for macroscopic highly polarized emission, waveguiding, and lasing. The resulting anisotropy has been interpreted so far by an induced dipole originating from the muscovite mica substrate. Based on a combined experimental and theoretical approach, we present an alternative growth model being able to explain molecular adsorption on sheet silicates in terms of molecule−surface interactions only. By a comprehensive comparison between experiments and simulations, we demonstrate that geometrical changes in the substrate surface or molecule lead to different molecular adsorption geometries and needle directions which can be predicted by our growth model

    Epitaxial Growth of π‑Stacked Perfluoropentacene on Graphene-Coated Quartz

    No full text
    Chemical-vapor-deposited large-area graphene is employed as the coating of transparent substrates for the growth of the prototypical organic n-type semiconductor perfluoropentacene (PFP). The graphene coating is found to cause face-on growth of PFP in a yet unknown substrate-mediated polymorph, which is solved by combining grazing-incidence X-ray diffraction with theoretical structure modeling. In contrast to the otherwise common herringbone arrangement of PFP in single crystals and “standing” films, we report a π-stacked arrangement of coplanar molecules in “flat-lying” films, which exhibit an exceedingly low π-stacking distance of only 3.07 Å, giving rise to significant electronic band dispersion along the π-stacking direction, as evidenced by ultraviolet photoelectron spectroscopy. Our study underlines the high potential of graphene for use as a transparent electrode in (opto-)electronic applications, where optimized vertical transport through flat-lying conjugated organic molecules is desired
    corecore