145 research outputs found

    Duality between equilibrium and growing networks

    Full text link
    In statistical physics any given system can be either at an equilibrium or away from it. Networks are not an exception. Most network models can be classified as either equilibrium or growing. Here we show that under certain conditions there exists an equilibrium formulation for any growing network model, and vice versa. The equivalence between the equilibrium and nonequilibrium formulations is exact not only asymptotically, but even for any finite system size. The required conditions are satisfied in random geometric graphs in general and causal sets in particular, and to a large extent in some real networks

    Navigability of Complex Networks

    Full text link
    Routing information through networks is a universal phenomenon in both natural and manmade complex systems. When each node has full knowledge of the global network connectivity, finding short communication paths is merely a matter of distributed computation. However, in many real networks nodes communicate efficiently even without such global intelligence. Here we show that the peculiar structural characteristics of many complex networks support efficient communication without global knowledge. We also describe a general mechanism that explains this connection between network structure and function. This mechanism relies on the presence of a metric space hidden behind an observable network. Our findings suggest that real networks in nature have underlying metric spaces that remain undiscovered. Their discovery would have practical applications ranging from routing in the Internet and searching social networks, to studying information flows in neural, gene regulatory networks, or signaling pathways

    Compact Routing on Internet-Like Graphs

    Full text link
    The Thorup-Zwick (TZ) routing scheme is the first generic stretch-3 routing scheme delivering a nearly optimal local memory upper bound. Using both direct analysis and simulation, we calculate the stretch distribution of this routing scheme on random graphs with power-law node degree distributions, PkkγP_k \sim k^{-\gamma}. We find that the average stretch is very low and virtually independent of γ\gamma. In particular, for the Internet interdomain graph, γ2.1\gamma \sim 2.1, the average stretch is around 1.1, with up to 70% of paths being shortest. As the network grows, the average stretch slowly decreases. The routing table is very small, too. It is well below its upper bounds, and its size is around 50 records for 10410^4-node networks. Furthermore, we find that both the average shortest path length (i.e. distance) dˉ\bar{d} and width of the distance distribution σ\sigma observed in the real Internet inter-AS graph have values that are very close to the minimums of the average stretch in the dˉ\bar{d}- and σ\sigma-directions. This leads us to the discovery of a unique critical quasi-stationary point of the average TZ stretch as a function of dˉ\bar{d} and σ\sigma. The Internet distance distribution is located in a close neighborhood of this point. This observation suggests the analytical structure of the average stretch function may be an indirect indicator of some hidden optimization criteria influencing the Internet's interdomain topology evolution.Comment: 29 pages, 16 figure

    Network Geometry Inference using Common Neighbors

    Full text link
    We introduce and explore a new method for inferring hidden geometric coordinates of nodes in complex networks based on the number of common neighbors between the nodes. We compare this approach to the HyperMap method, which is based only on the connections (and disconnections) between the nodes, i.e., on the links that the nodes have (or do not have). We find that for high degree nodes the common-neighbors approach yields a more accurate inference than the link-based method, unless heuristic periodic adjustments (or "correction steps") are used in the latter. The common-neighbors approach is computationally intensive, requiring O(t4)O(t^4) running time to map a network of tt nodes, versus O(t3)O(t^3) in the link-based method. But we also develop a hybrid method with O(t3)O(t^3) running time, which combines the common-neighbors and link-based approaches, and explore a heuristic that reduces its running time further to O(t2)O(t^2), without significant reduction in the mapping accuracy. We apply this method to the Autonomous Systems (AS) Internet, and reveal how soft communities of ASes evolve over time in the similarity space. We further demonstrate the method's predictive power by forecasting future links between ASes. Taken altogether, our results advance our understanding of how to efficiently and accurately map real networks to their latent geometric spaces, which is an important necessary step towards understanding the laws that govern the dynamics of nodes in these spaces, and the fine-grained dynamics of network connections

    Percolation in self-similar networks

    Get PDF
    We provide a simple proof that graphs in a general class of self-similar networks have zero percolation threshold. The considered self-similar networks include random scale-free graphs with given expected node degrees and zero clustering, scale-free graphs with finite clustering and metric structure, growing scale-free networks, and many real networks. The proof and the derivation of the giant component size do not require the assumption that networks are treelike. Our results rely only on the observation that self-similar networks possess a hierarchy of nested subgraphs whose average degree grows with their depth in the hierarchy. We conjecture that this property is pivotal for percolation in networks.Comment: 4 pages, 3 figure

    Sparse Maximum-Entropy Random Graphs with a Given Power-Law Degree Distribution

    Full text link
    Even though power-law or close-to-power-law degree distributions are ubiquitously observed in a great variety of large real networks, the mathematically satisfactory treatment of random power-law graphs satisfying basic statistical requirements of realism is still lacking. These requirements are: sparsity, exchangeability, projectivity, and unbiasedness. The last requirement states that entropy of the graph ensemble must be maximized under the degree distribution constraints. Here we prove that the hypersoft configuration model (HSCM), belonging to the class of random graphs with latent hyperparameters, also known as inhomogeneous random graphs or WW-random graphs, is an ensemble of random power-law graphs that are sparse, unbiased, and either exchangeable or projective. The proof of their unbiasedness relies on generalized graphons, and on mapping the problem of maximization of the normalized Gibbs entropy of a random graph ensemble, to the graphon entropy maximization problem, showing that the two entropies converge to each other in the large-graph limit

    Sparse Maximum-Entropy Random Graphs with a Given Power-Law Degree Distribution

    Full text link
    Even though power-law or close-to-power-law degree distributions are ubiquitously observed in a great variety of large real networks, the mathematically satisfactory treatment of random power-law graphs satisfying basic statistical requirements of realism is still lacking. These requirements are: sparsity, exchangeability, projectivity, and unbiasedness. The last requirement states that entropy of the graph ensemble must be maximized under the degree distribution constraints. Here we prove that the hypersoft configuration model (HSCM), belonging to the class of random graphs with latent hyperparameters, also known as inhomogeneous random graphs or WW-random graphs, is an ensemble of random power-law graphs that are sparse, unbiased, and either exchangeable or projective. The proof of their unbiasedness relies on generalized graphons, and on mapping the problem of maximization of the normalized Gibbs entropy of a random graph ensemble, to the graphon entropy maximization problem, showing that the two entropies converge to each other in the large-graph limit

    Greedy Forwarding in Dynamic Scale-Free Networks Embedded in Hyperbolic Metric Spaces

    Full text link
    We show that complex (scale-free) network topologies naturally emerge from hyperbolic metric spaces. Hyperbolic geometry facilitates maximally efficient greedy forwarding in these networks. Greedy forwarding is topology-oblivious. Nevertheless, greedy packets find their destinations with 100% probability following almost optimal shortest paths. This remarkable efficiency sustains even in highly dynamic networks. Our findings suggest that forwarding information through complex networks, such as the Internet, is possible without the overhead of existing routing protocols, and may also find practical applications in overlay networks for tasks such as application-level routing, information sharing, and data distribution
    corecore