46 research outputs found

    Pressure-Driven Metal-Insulator Transition in Hematite from Dynamical Mean-Field Theory

    Full text link
    The Local Density Approximation combined with Dynamical Mean-Field Theory (LDA+DMFT method) is applied to the study of the paramagnetic and magnetically ordered phases of hematite Fe2_2O3_3 as a function of volume. As the volume is decreased, a simultaneous 1st order insulator-metal and high-spin to low-spin transition occurs close to the experimental value of the critical volume. The high-spin insulating phase is destroyed by a progressive reduction of the charge gap with increasing pressure, upon closing of which the high spin phase becomes unstable. We conclude that the transition in Fe2_2O3_3 at \approx50 GPa can be described as an electronically driven volume collapse.Comment: 5 pages, 4 figure

    Electronic correlations and crystal structure distortions in BaBiO3

    Full text link
    BaBiO3 is a material where formally Bi4+ ions with the half-filled 6s-states form the alternating set of Bi3+ and Bi5+ ions resulting in a charge ordered insulator. The charge ordering is accompanied by the breathing distortion of the BiO6 octahedra (extension and contraction of the Bi-O bond lengths). Standard Density Functional Theory (DFT) calculations fail to obtain the crystal structure instability caused by the pure breathing distortions. Combining effects of the breathing distortions and tilting of the BiO6 octahedra allows DFT to reproduce qualitatively experimentally observed insulator with monoclinic crystal structure but gives strongly underestimate breathing distortion parameter and energy gap values. In the present work we reexamine the BaBiO3 problem within the GGA+U method using a Wannier functions basis set for the Bi 6s-band. Due to high oxidation state of bismuth in this material the Bi 6s-symmetry Wannier function is predominantly extended spatially on surrounding oxygen ions and hence differs strongly from a pure atomic 6s-orbital. That is in sharp contrast to transition metal oxides (with exclusion of high oxidation state compounds) where the major part a of d-band Wannier function is concentrated on metal ion and a pure atomic d-orbital can serve as a good approximation. The GGA+U calculation results agree well with experimental data, in particular with experimental crystal structure parameters and energy gap values. Moreover, the GGA+U method allows one to reproduce the crystal structure instability due to the pure breathing distortions without octahedra tilting

    First principle computation of stripes in cuprates

    Full text link
    We present a first principle computation of vertical stripes in La15/8Sr1/8CuO4La_{15/8}Sr_{1/8}CuO_4 within the LDA+U method. We find that Cu centered stripes are unstable toward O centered stripes. The metallic core of the stripe is quite wide and shows reduced magnetic moments with suppressed antiferromagnetic (AF) interactions. The system can be pictured as alternating metallic and AF two-leg ladders the latter with strong AF interaction and a large spin gap. The Fermi surface shows warping due to interstripe hybridization. The periodicity and amplitude of the warping is in good agreement with angle resolved photoemission experiment. We discuss the connection with low-energy theories of the cuprates.Comment: 5 pages,4 figure

    Coulomb Parameter U and Correlation Strength in LaFeAsO

    Full text link
    First principles constrained density functional theory scheme in Wannier functions formalism has been used to calculate Coulomb repulsion U and Hund's exchange J parameters for iron 3d electrons in LaFeAsO. Results strongly depend on the basis set used in calculations: when O-2p, As-4p, and Fe-3d orbitals and corresponding bands are included, computation results in U=3-4 eV, however, with the basis set restricted to Fe-3d orbitals and bands only, computation gives parameters corresponding to F^0=0.8 eV, J=0.5 eV. LDA+DMFT (the Local Density Approximation combined with the Dynamical Mean-Field Theory) calculation with this parameters results in weakly correlated electronic structure that is in agreement with X-ray experimental spectra

    Structural relaxation due to electronic correlations in the paramagnetic insulator KCuF3

    Full text link
    A computational scheme for the investigation of complex materials with strongly interacting electrons is formulated which is able to treat atomic displacements, and hence structural relaxation, caused by electronic correlations. It combines ab initio band structure and dynamical mean-field theory and is implemented in terms of plane-wave pseudopotentials. The equilibrium Jahn-Teller distortion and antiferro-orbital order found for paramagnetic KCuF3 agree well with experiment.Comment: 4 pages, 3 figure

    Computation of correlation-induced atomic displacements and structural transformations in paramagnetic KCuF3 and LaMnO3

    Get PDF
    We present a computational scheme for ab initio total-energy calculations of materials with strongly interacting electrons using a plane-wave basis set. It combines ab initio band structure and dynamical mean-field theory and is implemented in terms of plane-wave pseudopotentials. The present approach allows us to investigate complex materials with strongly interacting electrons and is able to treat atomic displacements, and hence structural transformations, caused by electronic correlations. Here it is employed to investigate two prototypical Jahn-Teller materials, KCuF3 and LaMnO3, in their paramagnetic phases. The computed equilibrium Jahn-Teller distortion and antiferro-orbital order agree well with experiment, and the structural optimization performed for paramagnetic KCuF3 yields the correct lattice constant, equilibrium Jahn-Teller distortion and tetragonal compression of the unit cell. Most importantly, the present approach is able to determine correlation-induced structural transformations, equilibrium atomic positions and lattice structure in both strongly and weakly correlated solids in their paramagnetic phases as well as in phases with long-range magnetic order.Comment: 27 pages, 11 figure
    corecore