34 research outputs found

    Microarray based analysis of an inherited terminal 3p26.3 deletion, containing only the CHL1 gene, from a normal father to his two affected children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>terminal deletions of the distal portion of the short arm of chromosome 3 cause a rare contiguous gene disorder characterized by growth retardation, developmental delay, mental retardation, dysmorphisms, microcephaly and ptosis. The phenotype of individuals with deletions varies from normal to severe. It was suggested that a 1,5 Mb minimal terminal deletion including the two genes <it>CRBN </it>and <it>CNTN4 </it>is sufficient to cause the syndrome.</p> <p>In addition the <it>CHL1 </it>gene, mapping at 3p26.3 distally to <it>CRBN </it>and <it>CNTN4</it>, was proposed as candidate gene for a non specific mental retardation because of its high level of expression in the brain.</p> <p>Methods and Results</p> <p>we describe two affected siblings in which array-CGH analysis disclosed an identical discontinuous terminal 3p26.3 deletion spanning less than 1 Mb. The deletion was transmitted from their normal father and included only the <it>CHL1 </it>gene. The two brothers present microcephaly, light mental retardation, learning and language difficulties but not the typical phenotype manifestations described in 3p- syndrome.</p> <p>Conclusion</p> <p>a terminal 3p26.3 deletion including only the <it>CHL1 </it>gene is a very rare finding previously reported only in one family. The phenotype of the affected individuals in the two families is very similar and the deletion has been inherited from an apparently normal parent. As already described for others recurrent syndromes with variable phenotype, these findings are challenging in genetic counselling because of an evident variable penetrance.</p

    Recurrence and Familial Inheritance of Intronic NIPBL Pathogenic Variant Associated With Mild CdLS

    Get PDF
    Splicing pathogenic variants account for a notable fraction of NIPBL alterations underlying Cornelia de Lange syndrome but are likely underrepresented, due to overlooking of non-canonical intronic variants by traditional and contemporary sequencing methods. We describe five subjects, belonging to three families, displaying a mild Cornelia de Lange syndrome phenotype who carry the NIPBL pathogenic variant c.5329–15A&gt;G, affecting the IVS27 branch site, yet reported in a single case. By RNA analysis we evidenced two alternative transcripts: the exon 28 in frame skipped transcript, described in the published case and an out-of-frame transcript retaining 14 nucleotides of IVS27 3â€Čend. Even if both aberrant transcripts are at negligible levels, their presence justifies the CdLS phenotype shared by our patients consisting of borderline-mild cognitive impairment and slight but typical facial dysmorphisms. Transmission of the pathogenic variant from pauci-symptomatic mother to her siblings emphasizes the need of molecular diagnosis extended to deep intronic regions in patients with subtle but recognizable CdLS phenotype

    P63 modulates the expression of the WDFY2 gene which is implicated in cancer regulation and limb development

    Get PDF
    TP63 is a member of the TP53 gene family, sharing a common gene structure that produces two groups of mRNAs\u2019 encoding proteins with different N-terminal regions ( 06N and TA isoforms); both transcripts are also subjected to alternative splicing mechanisms at C-terminus, generating a variety of isoforms. p63 is a master regulator of epidermal development and homoeostasis as well as an important player in tumorigenesis and cancer progression with both oncogenic and tumour suppressive roles. A number of studies have aimed at the identification of p63 target genes, allowing the dissection of the molecular pathways orchestrated by the different isoforms. In the present study we investigated in more detail the p63 responsiveness of the WDFY2 (WD repeat and FYVE domain containing 2) gene, encoding for an endosomal protein identified as a binding partner of the PI-3K/AKT signalling pathway. We showed that overexpression of different p63 isoforms was able to induce WDFY2 expression in TP53-null cells. The p63-dependent transcriptional activation was associated with specific response elements (REs) that have been identified by a bioinformatics tool and validated by yeast- and mammal-based assays. Interestingly, to confirm that WDFY2 belongs to the p63 network of cancer regulation, we analysed the impact of WDFY2 alterations, by showing its frequent deletion in different types of tumours and suggesting its expression level as a prognostic biomarker. Lastly, we identified a chromosomal translocation involving the WDFY2 locus in a patient affected by a rare congenital limb anomaly, indicating WDFY2 as a possible susceptibility gene placed downstream p63 in the network of limb development

    Assessment of copy number variations in 120 patients with Poland syndrome

    Get PDF
    Poland Syndrome (PS) is a rare congenital disorder presenting with agenesis/hypoplasia of the pectoralis major muscle variably associated with thoracic and/or upper limb anomalies. Most cases are sporadic, but familial recurrence, with different inheritance patterns, has been observed. The genetic etiology of PS remains unknown. Karyotyping and array-comparative genomic hybridization (CGH) analyses can identify genomic imbalances that can clarify the genetic etiology of congenital and neurodevelopmental disorders. We previously reported a chromosome 11 deletion in twin girls with pectoralis muscle hypoplasia and skeletal anomalies, and a chromosome six deletion in a patient presenting a complex phenotype that included pectoralis muscle hypoplasia. However, the contribution of genomic imbalances to PS remains largely unknown

    Recurrent microdeletion at 17q12 as a cause of Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome: two case reports

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mayer-Rokitansky-Kuster-Hauser syndrome (MRKH) consists of congenital aplasia of the uterus and the upper part of vagina due to anomalous development of MĂŒllerian ducts, either isolated or associated with other congenital malformations, including renal, skeletal, hearing and heart defects. This disorder has an incidence of approximately 1 in 4500 newborn girls and the aetiology is poorly understood.</p> <p>Methods and Results</p> <p>we report on two patients affected by MRKH syndrome in which array-CGH analysis disclosed an identical deletion spanning 1.5 Mb of genomic DNA at chromosome 17q12. One patient was affected by complete absence of uterus and vagina, with bilaterally normal ovaries, while the other displayed agenesis of the upper part of vagina, right unicornuate uterus, non cavitating rudimentary left horn and bilaterally multicystic kidneys. The deletion encompassed two candidate genes, <it>TCF2 </it>and <it>LHX1</it>. Mutational screening of these genes in a selected group of 20 MRKH females without 17q12 deletion was negative.</p> <p>Conclusion</p> <p>Deletion 17q12 is a rare albeit recurrent anomaly mediated by segmental duplications, previously reported in subjects with developmental kidney abnormalities and diabetes. The present two patients expand the clinical spectrum associated with this imbalance and suggest that this region is a candidate locus for a subset of MRKH syndrome individuals, with or without renal defects.</p

    Consensus based recommendations for diagnosis and medical management of Poland syndrome (sequence)

    Get PDF
    Background Poland syndrome (OMIM: 173800) is a disorder in which affected individuals are born with missing or underdeveloped muscles on one side of the body, resulting in abnormalities that can affect the chest, breast, shoulder, arm, and hand. The extent and severity of the abnormalities vary among affected individuals. Main body The aim of this work is to provide recommendations for the diagnosis and management of people affected by Poland syndrome based on evidence from literature and experience of health professionals from different medical backgrounds who have followed for several years affected subjects. The literature search was performed in the second half of 2019. Original papers, meta-analyses, reviews, books and guidelines were reviewed and final recommendations were reached by consensus. Conclusion Being Poland syndrome a rare syndrome most recommendations here presented are good clinical practice based on the consensus of the participant experts

    Abnormalities of pubertal development and gonadal function in Noonan syndrome

    Get PDF
    BackgroundNoonan syndrome (NS) is a genetic multisystem disorder characterised by variable clinical manifestations including dysmorphic facial features, short stature, congenital heart disease, renal anomalies, lymphatic malformations, chest deformities, cryptorchidism in males.MethodsIn this narrative review, we summarized the available data on puberty and gonadal function in NS subjects and the role of the RAS/mitogen-activated protein kinase (MAPK) signalling pathway in fertility. In addition, we have reported our personal experience on pubertal development and vertical transmission in NS.ConclusionsAccording to the literature and to our experience, NS patients seem to have a delay in puberty onset compared to the physiological timing reported in healthy children. Males with NS seem to be at risk of gonadal dysfunction secondary not only to cryptorchidism but also to other underlying developmental factors including the MAP/MAPK pathway and genetics. Long-term data on a large cohort of males and females with NS are needed to better understand the impact of delayed puberty on adult height, metabolic profile and well-being. The role of genetic counselling and fertility related-issues is crucial

    Thrombocytopenia-absent radius (TAR) syndrome due to compound inheritance for a 1q21.1 microdeletion and a low-frequency noncoding RBM8A SNP: a new familial case

    No full text
    Thrombocytopenia-absent radius syndrome (TAR; MIM 274000) is a rare autosomal recessive disorder combining specific skeletal abnormalities with a reduced platelet count. TAR syndrome has been associated with the compound inheritance of an interstitial microdeletion in 1q21.1 and a low frequency noncoding RBM8A SNP
    corecore