163 research outputs found
(3+1)-dimensional topological phases and self-dual quantum geometries encoded on Heegard surfaces
We apply the recently suggested strategy to lift state spaces and operators
for (2+1)-dimensional topological quantum field theories to state spaces and
operators for a (3+1)-dimensional TQFT with defects. We start from the
(2+1)-dimensional Turaev-Viro theory and obtain a state space, consistent with
the state space expected from the Crane-Yetter model with line defects. This
work has important applications for quantum gravity as well as the theory of
topological phases in (3+1) dimensions. It provides a self-dual quantum
geometry realization based on a vacuum state peaked on a homogeneously curved
geometry. The state spaces and operators we construct here provide also an
improved version of the Walker-Wang model, and simplify its analysis
considerably. We in particular show that the fusion bases of the
(2+1)-dimensional theory lead to a rich set of bases for the (3+1)-dimensional
theory. This includes a quantum deformed spin network basis, which in a loop
quantum gravity context diagonalizes spatial geometry operators. We also obtain
a dual curvature basis, that diagonalizes the Walker-Wang Hamiltonian.
Furthermore, the construction presented here can be generalized to provide
state spaces for the recently introduced dichromatic four-dimensional manifold
invariants.Comment: 27 pages, many figures, v2: minor correction
Towards a dual spin network basis for (3+1)d lattice gauge theories and topological phases
Using a recent strategy to encode the space of flat connections on a
three-manifold with string-like defects into the space of flat connections on a
so-called 2d Heegaard surface, we propose a novel way to define gauge invariant
bases for (3+1)d lattice gauge theories and gauge models of topological phases.
In particular, this method reconstructs the spin network basis and yields a
novel dual spin network basis. While the spin network basis allows to interpret
states in terms of electric excitations, on top of a vacuum sharply peaked on a
vanishing electric field, the dual spin network basis describes magnetic (or
curvature) excitations, on top of a vacuum sharply peaked on a vanishing
magnetic field (or flat connection). This technique is also applicable for
manifolds with boundaries. We distinguish in particular a dual pair of boundary
conditions, namely of electric type and of magnetic type. This can be used to
consider a generalization of Ocneanu's tube algebra in order to reveal the
algebraic structure of the excitations associated with certain 3d manifolds.Comment: 45 page
- …