66 research outputs found

    Fault-Tolerant Spanners: Better and Simpler

    Full text link
    A natural requirement of many distributed structures is fault-tolerance: after some failures, whatever remains from the structure should still be effective for whatever remains from the network. In this paper we examine spanners of general graphs that are tolerant to vertex failures, and significantly improve their dependence on the number of faults rr, for all stretch bounds. For stretch k3k \geq 3 we design a simple transformation that converts every kk-spanner construction with at most f(n)f(n) edges into an rr-fault-tolerant kk-spanner construction with at most O(r3logn)f(2n/r)O(r^3 \log n) \cdot f(2n/r) edges. Applying this to standard greedy spanner constructions gives rr-fault tolerant kk-spanners with O~(r2n1+2k+1)\tilde O(r^{2} n^{1+\frac{2}{k+1}}) edges. The previous construction by Chechik, Langberg, Peleg, and Roddity [STOC 2009] depends similarly on nn but exponentially on rr (approximately like krk^r). For the case k=2k=2 and unit-length edges, an O(rlogn)O(r \log n)-approximation algorithm is known from recent work of Dinitz and Krauthgamer [arXiv 2010], where several spanner results are obtained using a common approach of rounding a natural flow-based linear programming relaxation. Here we use a different (stronger) LP relaxation and improve the approximation ratio to O(logn)O(\log n), which is, notably, independent of the number of faults rr. We further strengthen this bound in terms of the maximum degree by using the \Lovasz Local Lemma. Finally, we show that most of our constructions are inherently local by designing equivalent distributed algorithms in the LOCAL model of distributed computation.Comment: 17 page

    Approximating the Norms of Graph Spanners

    Get PDF

    Brief Announcement: Massively Parallel Approximate Distance Sketches

    Get PDF
    Data structures that allow efficient distance estimation have been extensively studied both in centralized models and classical distributed models. We initiate their study in newer (and arguably more realistic) models of distributed computation: the Congested Clique model and the Massively Parallel Computation (MPC) model. In MPC we give two main results: an algorithm that constructs stretch/space optimal distance sketches but takes a (small) polynomial number of rounds, and an algorithm that constructs distance sketches with worse stretch but that only takes polylogarithmic rounds. Along the way, we show that other useful combinatorial structures can also be computed in MPC. In particular, one key component we use is an MPC construction of the hopsets of Elkin and Neiman (2016). This result has additional applications such as the first polylogarithmic time algorithm for constant approximate single-source shortest paths for weighted graphs in the low memory MPC setting

    Massively Parallel Approximate Distance Sketches

    Get PDF
    Data structures that allow efficient distance estimation (distance oracles, distance sketches, etc.) have been extensively studied, and are particularly well studied in centralized models and classical distributed models such as CONGEST. We initiate their study in newer (and arguably more realistic) models of distributed computation: the Congested Clique model and the Massively Parallel Computation (MPC) model. We provide efficient constructions in both of these models, but our core results are for MPC. In MPC we give two main results: an algorithm that constructs stretch/space optimal distance sketches but takes a (small) polynomial number of rounds, and an algorithm that constructs distance sketches with worse stretch but that only takes polylogarithmic rounds. Along the way, we show that other useful combinatorial structures can also be computed in MPC. In particular, one key component we use to construct distance sketches are an MPC construction of the hopsets of [Elkin and Neiman, 2016]. This result has additional applications such as the first polylogarithmic time algorithm for constant approximate single-source shortest paths for weighted graphs in the low memory MPC setting

    The Capacity of Smartphone Peer-To-Peer Networks

    Get PDF
    We study three capacity problems in the mobile telephone model, a network abstraction that models the peer-to-peer communication capabilities implemented in most commodity smartphone operating systems. The capacity of a network expresses how much sustained throughput can be maintained for a set of communication demands, and is therefore a fundamental bound on the usefulness of a network. Because of this importance, wireless network capacity has been active area of research for the last two decades. The three capacity problems that we study differ in the structure of the communication demands. The first problem is pairwise capacity, where the demands are (source, destination) pairs. Pairwise capacity is one of the most classical definitions, as it was analyzed in the seminal paper of Gupta and Kumar on wireless network capacity. The second problem we study is broadcast capacity, in which a single source must deliver packets to all other nodes in the network. Finally, we turn our attention to all-to-all capacity, in which all nodes must deliver packets to all other nodes. In all three of these problems we characterize the optimal achievable throughput for any given network, and design algorithms which asymptotically match this performance. We also study these problems in networks generated randomly by a process introduced by Gupta and Kumar, and fully characterize their achievable throughput. Interestingly, the techniques that we develop for all-to-all capacity also allow us to design a one-shot gossip algorithm that runs within a polylogarithmic factor of optimal in every graph. This largely resolves an open question from previous work on the one-shot gossip problem in this model

    Lowest Degree k-Spanner: Approximation and Hardness

    Get PDF
    A k-spanner is a subgraph in which distances are approximately preserved, up to some given stretch factor k. We focus on the following problem: Given a graph and a value k, can we find a k-spanner that minimizes the maximum degree? While reasonably strong bounds are known for some spanner problems, they almost all involve minimizing the total number of edges. Switching the objective to the degree introduces significant new challenges, and currently the only known approximation bound is an O~(Delta^(3-2*sqrt(2)))-approximation for the special case when k = 2 [Chlamtac, Dinitz, Krauthgamer FOCS 2012] (where Delta is the maximum degree in the input graph). In this paper we give the first non-trivial algorithm and polynomial-factor hardness of approximation for the case of general k. Specifically, we give an LP-based O~(Delta^((1-1/k)^2) )-approximation and prove that it is hard to approximate the optimum to within Delta^Omega(1/k) when the graph is undirected, and to within Delta^Omega(1) when it is directed

    Computing approximate PSD factorizations

    Get PDF
    We give an algorithm for computing approximate PSD factorizations of nonnegative matrices. The running time of the algorithm is polynomial in the dimensions of the input matrix, but exponential in the PSD rank and the approximation error. The main ingredient is an exact factorization algorithm when the rows and columns of the factors are constrained to lie in a general polyhedron. This strictly generalizes nonnegative matrix factorizations which can be captured by letting this polyhedron to be the nonnegative orthant.Comment: 10 page

    Towards Resistance Sparsifiers

    Get PDF
    We study resistance sparsification of graphs, in which the goal is to find a sparse subgraph (with reweighted edges) that approximately preserves the effective resistances between every pair of nodes. We show that every dense regular expander admits a (1+ϵ)(1+\epsilon)-resistance sparsifier of size O~(n/ϵ)\tilde O(n/\epsilon), and conjecture this bound holds for all graphs on nn nodes. In comparison, spectral sparsification is a strictly stronger notion and requires Ω(n/ϵ2)\Omega(n/\epsilon^2) edges even on the complete graph. Our approach leads to the following structural question on graphs: Does every dense regular expander contain a sparse regular expander as a subgraph? Our main technical contribution, which may of independent interest, is a positive answer to this question in a certain setting of parameters. Combining this with a recent result of von Luxburg, Radl, and Hein~(JMLR, 2014) leads to the aforementioned resistance sparsifiers
    corecore