1,010 research outputs found

    Comment on " a unified scheme for flavored mesons and baryons"

    Full text link
    We would comment on the results of the paper "a unified scheme for flavored mesons and baryons" (P.C.Vinodkumar, J.N.Panandya, V.M.Bannur, and S.B.Khadkikar Eur. Phys. J. A4(1999)83), and point out some inconsistencies and mistakes in the work for solving the Dirac equation. In terms of an example for a single particle we investigate the reliability of the perturbative method for computing the Coulomb energy and discuss the contribution to the wavefunction at origin from the Coulomb potential. We conclude that the accuracy of their numerical results needs to be reconsidered.Comment: Latex file, 11page

    Molecular States and 1^-+ Exotic Mesons

    Full text link
    This work investigates whether the observed 1^-+ exotic mesons are molecular states. We first use a potential model to calculate the spectra and lifetimes of the f_0(980) and a_0(980), taken to be loosely bound molecular states of K Kbar, then apply the same scenario to the 1^-+ exotic states pi_1(1400) and pi_1(1600), assuming them to be pi eta(1295) and pi eta(1440) molecules respectively. We derive the effective potential in the framework of field theory at the hadronic level. Our results indicate that the present data on pi_1(1400) and pi_1(1600) rule out the specific molecular ansatz. We show that the lifetime of a loosely bound heavy-light molecule with enough angular momentum is fully determined by the lifetimes of its constituent mesons.Comment: 23 pages, 1 figure, LaTe

    Testing the Bell Inequality at Experiments of High Energy Physics

    Full text link
    Besides using the laser beam, it is very tempting to directly testify the Bell inequality at high energy experiments where the spin correlation is exactly what the original Bell inequality investigates. In this work, we follow the proposal raised in literature and use the successive decays J/ψ→γηc→ΛΛˉ→pπ−pˉπ+J/\psi\to\gamma\eta_c\to \Lambda\bar\Lambda\to p\pi^-\bar p\pi^+ to testify the Bell inequality. Our goal is twofold, namely, we first make a Monte-Carlo simulation of the processes based on the quantum field theory (QFT). Since the underlying theory is QFT, it implies that we pre-admit the validity of quantum picture. Even though the QFT is true, we need to find how big the database should be, so that we can clearly show deviations of the correlation from the Bell inequality determined by the local hidden variable theory. There have been some critiques on the proposed method, so in the second part, we suggest some improvements which may help to remedy the ambiguities indicated by the critiques. It may be realized at an updated facility of high energy physics, such as BES III.Comment: 16 pages, 5 figure

    Applicability of the Friedberg-Lee-Zhao method

    Full text link
    Friedberg, Lee and Zhao proposed a method for effectively evaluating the eigenenergies and eigen wavefunctions of quantum systems. In this work, we study several special cases to investigate applicability of the method. Concretely, we calculate the ground-state eigenenergy of the Hellmann potential as well as the Cornell potential, and also evaluate the energies of the systems where linear term is added to the Coulomb and harmonic oscillator potentials as a perturbation. The results obtained in this method have a surprising agreement with the traditional method or the numerical results. Since the results in this method have obvious analyticity compared to that in other methods, and because of the simplicity for calculations this method can be applied to solving the Schr\"{o}dinger equation and provides us better understanding of the physical essence of the concerned systems. But meanwhile applications of the FLZ method are restricted at present, especially for certain potential forms, but due to its obvious advantages, it should be further developed.Comment: 14 pages,no figure
    • …
    corecore