18 research outputs found
On iterative methods based on Sherman-Morrison-Woodbury splitting
We consider a new splitting based on the Sherman-Morrison-Woodbury formula, which is particularly effective with iterative methods for the numerical solution of large linear systems and especially for systems involving matrices that are perturbations of circulant or block circulant matrices. Such matrices typically arise in the discretization of differential equations using finite element or finite difference methods. We prove the convergence of the new iteration without making any assumptions regarding the symmetry or diagonal-dominance of the matrix, which are limiting factors for most classical iterative methods. To illustrate the efficacy of the new iteration we present various applications. These include extensions of the new iteration to block matrices that arise in certain saddle point problems as well as two-dimensional finite difference discretizations. The new method exhibits fast convergence in all of the test cases we used. It has minimal storage requirements, straightforward implementation and compatibility with nearly circulant matrices via the Fast Fourier Transform. Remarkably, the new method was tested against very large matrices demonstrating extremely fast convergence. For these reasons it can be a valuable tool for the solution of various finite elements and finite differences discretizations of differential equations
Extended water wave systems of Boussinesq equations on a finite interval: Theory and numerical analysis
Considered here is a class of Boussinesq systems of Nwogu type. Such systems describe propagation of nonlinear and dispersive water waves of significant interest such as solitary and tsunami waves. The initial-boundary value problem on a finite interval for this family of systems is studied both theoretically and numerically. First, the linearization of a certain generalized Nwogu system is solved analytically via the unified transform of Fokas. The corresponding analysis reveals two types of admissible boundary conditions, thereby suggesting appropriate boundary conditions for the nonlinear Nwogu system on a finite interval. Then, well-posedness is established, both in the weak and in the classical sense, for a regularized Nwogu system in the context of an initial-boundary value problem that describes the dynamics of water waves in a basin with wall-boundary conditions. In addition, a new modified Galerkin method is suggested for the numerical discretization of this regularized system in time, and its convergence is proved along with optimal error estimates. Finally, numerical experiments illustrating the effect of the boundary conditions on the reflection of solitary waves by a vertical wall are also provided
Solitary-Wave Solutions of Benjamin–Ono and Other Systems for Internal Waves: II. Dynamics
Considered here are two systems of equations modeling the two-way propagation of long-crested, long-wavelength internal waves along the interface of a two-layer system of fluids in the Benjamin–Ono and the Intermediate Long-Wave regime, respectively. These systems were previously shown to have solitary-wave solutions, decaying to zero algebraically for the Benjamin–Ono system, and exponentially in the Intermediate Long-Wave regime. Several methods to approximate solitary-wave profiles were introduced and analyzed by the authors in Part I of this project. A natural continuation of this previous work, pursued here, is to study the dynamics of the solitary-wave solutions of these systems. This will be done by computational means using a discretization of the periodic initial-value problem. The numerical method used here is a Fourier spectral method for the spatial approximation coupled with a fourth-order, explicit Runge–Kutta time stepping. The resulting, fully discrete scheme is used to study computationally the stability of the solitary waves under small and large perturbations, the collisions of solitary waves, the resolution of initial data into trains of solitary waves, and the formation of dispersive shock waves. Comparisons with related unidirectional models are also undertaken
DISPERSIVE SHOCKS IN DIFFUSIVE-DISPERSIVE APPROXIMATIONS OF ELASTICITY AND QUANTUM-HYDRODYNAMICS
The aim is to assess the combined effect of diffusion and dispersion on shocks in the moderate dispersion regime. For a diffusive dispersive approximation of the equations of one-dimensional elasticity (or p-system), we study convergence of traveling waves to shocks. The problem is recast as a Hamiltonian system with small friction, and an analysis of the length of oscillations yields convergence in the moderate dispersion regime (Formula presented) with (Formula presented), under hypotheses that the limiting shock is admissible according to the Liu E-condition and is not a contact discontinuity at either end state. A similar convergence result is proved for traveling waves of the quantum hydrodynamic system with artificial viscosity as well as for a viscous Peregrine-Boussinesq system where traveling waves model undular bores, in all cases in the moderate dispersion regime
Equations for small amplitude shallow water waves over small bathymetric variations
A generalized version of the abcd-Boussinesq class of systems is derived to accommodate variable bottom topography in two-dimensional space. This extension allows for the conservation of suitable energy functionals in some cases and enables the description of water waves in closed basins with well-justified slip-wall boundary conditions. The derived systems possess a form that ensures their solutions adhere to important principles of physics and mathematics. By demonstrating their consistency with the Euler equations and estimating their approximation error, we establish the validity of these new systems. Their derivation is based on the assumption of small bathymetric variations. With practical applications in mind, we assess the effectiveness of some of these new systems through comparisons with standard benchmarks. The results indicate that the assumptions made during the derivation are not overly restrictive. The applications of the new systems encompass a wide range of scenarios, including the study of tsunamis, tidal waves and waves in ports and lakes
A broad class of conservative numerical methods for dispersive wave equations
We develop a general framework for designing conservative numerical methods based on summation by parts operators and split forms in space, combined with relaxation Runge-Kutta methods in time. We apply this framework to create new classes of fully-discrete conservative methods for several nonlinear dispersive wave equations: Benjamin-Bona-Mahony (BBM), Fornberg-Whitham, Camassa-Holm, Degasperis-Procesi, Holm-Hone, and the BBM-BBM system. These full discretizations conserve all linear invariants and one nonlinear invariant for each system. The spatial semidiscretizations include finite difference, spectral collocation, and both discontinuous and continuous finite element methods. The time discretization is essentially explicit, using relaxation Runge-Kutta methods. We implement some specific schemes from among the derived classes, and demonstrate their favorable properties through numerical tests
Oscillatory and regularized shock waves for a modified Serre–Green–Naghdi system
The Serre–Green–Naghdi equations of water wave theory have been widely employed to study undular bores. In this study, we introduce a modified Serre–Green–Naghdi system incorporating the effect of an artificial term that results in dispersive and dissipative dynamics. We show that the modified system effectively approximates the classical Serre–Green–Naghdi equations over sufficiently extended time intervals and admits dispersive–diffusive shock waves as traveling wave solutions. The traveling waves converge to the entropic shock wave solution of the shallow water equations when the dispersion and diffusion approach zero in a moderate dispersion regime. These findings contribute to an understanding of the formation of dispersive shock waves in the classical Serre–Green–Naghdi equations and the effects of diffusion in the generation and propagation of undular bores
Numerical approximation to Benjamin type equations. Generation and stability of solitary waves
© 2018 Elsevier B.V. This paper is concerned with the study, by computational means, of the generation and stability of solitary-wave solutions of generalized versions of the Benjamin equation. The numerical generation of the solitary-wave profiles is accurately performed with a modified Petviashvili method which includes extrapolation to accelerate the convergence. In order to study the dynamics of the solitary waves the equations are discretized in space with a Fourier pseudospectral collocation method and a fourth-order, diagonally implicit Runge–Kutta method of composition type as time-stepping integrator. The stability of the waves is numerically studied by performing experiments with small and large perturbations of the solitary pulses as well as interactions of solitary waves
Oscillatory and regularized shock waves for a dissipative Peregrine-Boussinesq system
We consider a dissipative, dispersive system of the Boussinesq type, which describes wave phenomena in scenarios where dissipation plays a significant role. Examples include undular bores in rivers or oceans, where turbulence-induced dissipation significantly influences their behavior. In this study, we demonstrate that the proposed system admits traveling wave solutions known as diffusive-dispersive shock waves. These solutions can be categorized as oscillatory and regularized shock waves, depending on the interplay between dispersion and dissipation effects. By comparing numerically computed solutions with laboratory data, we observe that the proposed model accurately captures the behavior of undular bores over a broad range of phase speeds. Traditionally, undular bores have been approximated using the original Peregrine system, which, even though it doesn't possess these as traveling wave solutions, tends to offer accurate approximations within suitable time scales. To shed light on this phenomenon, we demonstrate that the discrepancy between the solutions of the dissipative Peregrine system and the non-dissipative counterpart is proportional to the product of the dissipation coefficient and the observation time
Finite volume schemes for Boussinesq type equations
Finite volume schemes are commonly used to construct approximate solutions to
conservation laws. In this study we extend the framework of the finite volume
methods to dispersive water wave models, in particular to Boussinesq type
systems. We focus mainly on the application of the method to bidirectional
nonlinear, dispersive wave propagation in one space dimension. Special emphasis
is given to important nonlinear phenomena such as solitary waves interactions