140 research outputs found

    PlayMyData: a curated dataset of multi-platform video games

    Full text link
    Being predominant in digital entertainment for decades, video games have been recognized as valuable software artifacts by the software engineering (SE) community just recently. Such an acknowledgment has unveiled several research opportunities, spanning from empirical studies to the application of AI techniques for classification tasks. In this respect, several curated game datasets have been disclosed for research purposes even though the collected data are insufficient to support the application of advanced models or to enable interdisciplinary studies. Moreover, the majority of those are limited to PC games, thus excluding notorious gaming platforms, e.g., PlayStation, Xbox, and Nintendo. In this paper, we propose PlayMyData, a curated dataset composed of 99,864 multi-platform games gathered by IGDB website. By exploiting a dedicated API, we collect relevant metadata for each game, e.g., description, genre, rating, gameplay video URLs, and screenshots. Furthermore, we enrich PlayMyData with the timing needed to complete each game by mining the HLTB website. To the best of our knowledge, this is the most comprehensive dataset in the domain that can be used to support different automated tasks in SE. More importantly, PlayMyData can be used to foster cross-domain investigations built on top of the provided multimedia data.Comment: Accepted at the The 21st Mining Software Repositories (MSR 2024

    Automated categorization of pre-trained models for software engineering: A case study with a Hugging Face dataset

    Full text link
    Software engineering (SE) activities have been revolutionized by the advent of pre-trained models (PTMs), defined as large machine learning (ML) models that can be fine-tuned to perform specific SE tasks. However, users with limited expertise may need help to select the appropriate model for their current task. To tackle the issue, the Hugging Face (HF) platform simplifies the use of PTMs by collecting, storing, and curating several models. Nevertheless, the platform currently lacks a comprehensive categorization of PTMs designed specifically for SE, i.e., the existing tags are more suited to generic ML categories. This paper introduces an approach to address this gap by enabling the automatic classification of PTMs for SE tasks. First, we utilize a public dump of HF to extract PTMs information, including model documentation and associated tags. Then, we employ a semi-automated method to identify SE tasks and their corresponding PTMs from existing literature. The approach involves creating an initial mapping between HF tags and specific SE tasks, using a similarity-based strategy to identify PTMs with relevant tags. The evaluation shows that model cards are informative enough to classify PTMs considering the pipeline tag. Moreover, we provide a mapping between SE tasks and stored PTMs by relying on model names.Comment: Accepted at The International Conference on Evaluation and Assessment in Software Engineering (EASE), 2024 editio

    Monte Carlo generators for top quark physics at the LHC

    Get PDF
    We review the main features of Monte Carlo generators for top quark phenomenology and present some results for t-tbar and single-top signals and backgrounds at the LHC.Comment: 7 pages, 5 figures. Talk given at `V Workshop Italiano sulla Fisica pp a LHC', Perugia, Italy, 30 January - 2 February 2008. References update

    Re-discovery of the top quark at the LHC and first measurements

    Get PDF
    This paper describes the top quark physics measurements that can be performed with the first LHC data in the ATLAS and CMS experiments.Comment: 6 pages, 2 figures. Talk given at `V Workshop Italiano sulla Fisica pp a LHC', Perugia, Italy, 30 January - 2 February 200

    GPGPU for track finding in High Energy Physics

    Full text link
    The LHC experiments are designed to detect large amount of physics events produced with a very high rate. Considering the future upgrades, the data acquisition rate will become even higher and new computing paradigms must be adopted for fast data-processing: General Purpose Graphics Processing Units (GPGPU) is a novel approach based on massive parallel computing. The intense computation power provided by Graphics Processing Units (GPU) is expected to reduce the computation time and to speed-up the low-latency applications used for fast decision taking. In particular, this approach could be hence used for high-level triggering in very complex environments, like the typical inner tracking systems of the multi-purpose experiments at LHC, where a large number of charged particle tracks will be produced with the luminosity upgrade. In this article we discuss a track pattern recognition algorithm based on the Hough Transform, where a parallel approach is expected to reduce dramatically the execution time.Comment: 6 pages, 4 figures, proceedings prepared for GPU-HEP 2014 conference, submitted to DESY-PROC-201

    Supporting Early-Safety Analysis of IoT Systems by Exploiting Testing Techniques

    Full text link
    IoT systems complexity and susceptibility to failures pose significant challenges in ensuring their reliable operation Failures can be internally generated or caused by external factors impacting both the systems correctness and its surrounding environment To investigate these complexities various modeling approaches have been proposed to raise the level of abstraction facilitating automation and analysis FailureLogic Analysis FLA is a technique that helps predict potential failure scenarios by defining how a components failure logic behaves and spreads throughout the system However manually specifying FLA rules can be arduous and errorprone leading to incomplete or inaccurate specifications In this paper we propose adopting testing methodologies to improve the completeness and correctness of these rules How failures may propagate within an IoT system can be observed by systematically injecting failures while running test cases to collect evidence useful to add complete and refine FLA rule
    corecore