4,138 research outputs found
Primo rinvenimento in Sicilia di Typha laxmannii (Typhaceae)
First record of Typha laxmannii Lepech. (Typhaceae) in Sicily. Typha laxmannii Lepech. (Typhaceae) is here reported, for the first time, in Sicily at Scopello, near Castellammare del Golfo (NW Sicily). This species is compared with the congenerics occurring in the region; dichotomous key and description are also given to make the identification easier
Debris-flow susceptibility assessment through cellular automata modeling: an example from 15?16 December 1999 disaster at Cervinara and San Martino Valle Caudina (Campania, southern Italy)
International audienceOn 15?16 December 1999, heavy rainfall severely stroke Campania region (southern Italy), triggering numerous debris flows on the slopes of the San Martino Valle Caudina-Cervinara area. Soil slips originated within the weathered volcaniclastic mantle of soil cover overlying the carbonate skeleton of the massif. Debris slides turned into fast flowing mixtures of matrix and large blocks, downslope eroding the soil cover and increasing their original volume. At the base of the slopes, debris flows impacted on the urban areas, causing victims and severe destruction (Vittori et al., 2000). Starting from a recent study on landslide risk conditions in Campania, carried out by the Regional Authority (PAI ?Hydrogeological setting plan, in press), an evaluation of the debris-flow susceptibility has been performed for selected areas of the above mentioned villages. According to that study, such zones would be in fact characterised by the highest risk levels within the administrative boundaries of the same villages ("HR-zones"). Our susceptibility analysis has been performed by applying SCIDDICA S3?hex ? a hexagonal Cellular Automata model (von Neumann, 1966), specifically developed for simulating the spatial evolution of debris flows (Iovine et al., 2002). In order to apply the model to a given study area, detailed topographic data and a map of the erodable soil cover overlying the bedrock of the massif must be provided (as input matrices); moreover, extent and location of landslide source must also be given. Real landslides, selected among those triggered on winter 1999, have first been utilised for calibrating SCIDDICA S3?hex and for defining "optimal" values for parameters. Calibration has been carried out with a GIS tool, by quantitatively comparing simulations with actual cases: optimal values correspond to best simulations. Through geological evaluations, source locations of new phenomena have then been hypothesised within the HR-zones. Initial volume for these new cases has been estimated by considering the actual statistics of the 1999 landslides. Finally, by merging the results of simulations, a deterministic susceptibility zonation of the considered area has been obtained. In this paper, aiming at illustrating the potential for debris-flow hazard analyses of the model SCIDDICA S3?hex, a methodological example of susceptibility zonation of the Vallicelle HR-zone is presented
On random flights with non-uniformly distributed directions
This paper deals with a new class of random flights defined in the real space characterized
by non-uniform probability distributions on the multidimensional sphere. These
random motions differ from similar models appeared in literature which take
directions according to the uniform law. The family of angular probability
distributions introduced in this paper depends on a parameter which
gives the level of drift of the motion. Furthermore, we assume that the number
of changes of direction performed by the random flight is fixed. The time
lengths between two consecutive changes of orientation have joint probability
distribution given by a Dirichlet density function.
The analysis of is not an easy task, because it
involves the calculation of integrals which are not always solvable. Therefore,
we analyze the random flight obtained as
projection onto the lower spaces of the original random
motion in . Then we get the probability distribution of
Although, in its general framework, the analysis of is very complicated, for some values of , we can provide
some results on the process. Indeed, for , we obtain the characteristic
function of the random flight moving in . Furthermore, by
inverting the characteristic function, we are able to give the analytic form
(up to some constants) of the probability distribution of Comment: 28 pages, 3 figure
REPRESENTATION AND DIGITALIZATION OF STONE THEATRES IN EASTERN SICILY: THE PALAZZOLO ACREIDE THEATER
The ancient theatres in Sicily, in southern Italy and along the countries facing the Mediterranean Sea basin, constitute a reality of incomparable cultural value. Regarding the research on the ancient theatres of eastern Sicily, few studies have been recently dealt with different methodologies. In the last years some practices have been done using 3D laser scanners for the theatres of Syracuse, Taormina and Morgantina, as well as the Syracuse amphitheatre and Taormina Odeon, just obtaining very interesting results. Lately the theatre of Palazzolo Acreide (Syracuse) has been studied, with Structure From Motion (SFM) and Dense Matching methodologies. From these experience, conclusions could be drawn on the quality and reliability of the elaborations realised with the SFM methodologies. We really know that these systems are today representing one of the fastest growing areas of examination, on which several software houses are investing. The study was chosen both for the small size of the building, and for the particular geometric conditions typical of the architecture of ancient theatres. This because their three-dimensional trend varies continually in the three variables X, Y, Z. The purpose of the work was to check whether the latest releases of these systems of survey allow today more than yesterday, a rapid digitalization and representation of the enormous archaeological cultural heritage. Various software were used, to verify the practicality and operation, the choice then fell on the Zephyr of 3DFlow, kindly available by the manufacturer, whose results were quite agreeable. The possibility offered by the program of a graphical tracing of polylines on the textured 3D model, has been a considerable advantage. Therefore the results obtained by modeling and surveying of the Palazzolo Acreide theatre have been compared, with the survey of the Syracuse, Taormina and Morgantina theatre performed using 3D laser scanners. First results of the research are matter of the following work
Majorana and the quasi-stationary states in Nuclear Physics
A complete theoretical model describing artificial disintegration of nuclei
by bombardment with alpha-particles, developed by Majorana as early as in 1930,
is discussed in detail alongside the basic experimental evidences that
motivated it. By following the quantum dynamics of a state resulting from the
superposition of a discrete state with a continuum one, whose interaction is
described by a given potential term, Majorana obtained (among the other
predictions) the explicit expression for the integrated cross section of the
nuclear process, which is the direct measurable quantity of interest in the
experiments. Though this is the first application of the concept of
quasi-stationary states to a Nuclear Physics problem, it seems also that the
unpublished Majorana's work anticipates by several years the related seminal
paper by Fano on Atomic Physics.Comment: latex, amsart, 13 page
BCR-ABL1 doubling-times and halving-times may predict CML response to tyrosine kinase inhibitors
In Chronic Myeloid Leukemia (CML), successful treatment requires accurate molecular monitoring to evaluate disease response and provide timely interventions for patients failing to achieve the desired outcomes. We wanted to determine whether measuring BCR-ABL1 mRNA doubling-times (DTs) could distinguish inconsequential rises in the oncogene’s expression from resistance to tyrosine kinase inhibitors (TKIs). Thus, we retrospectively examined BCR-ABL1 evolution in 305 chronic-phase CML patients receiving imatinib mesylate (IM) as a first line treatment. Patients were subdivided in two groups: those with a confirmed rise in BCR-ABL1 transcripts without MR3.0 loss and those failing IM. We found that the DTs of the former patients were significantly longer than those of patients developing IM resistance (57.80 vs. 41.45 days, p = 0.0114). Interestingly, the DT values of individuals failing second-generation (2G) TKIs after developing IM resistance were considerably shorter than those observed at the time of IM failure (27.20 vs. 41.45 days; p = 0.0035). We next wanted to establish if decreases in BCR-ABL1 transcripts would identify subjects likely to obtain deep molecular responses. We therefore analyzed the BCR-ABL1 halving-times (HTs) of a different cohort comprising 174 individuals receiving IM in first line and observed that, regardless of the time point selected for our analyses (6, 12, or 18 months), HTs were significantly shorter in subjects achieving superior molecular responses (p = 0.002 at 6 months; p < 0.001 at 12 months; p = 0.0099 at 18 months). Moreover, 50 patients receiving 2G TKIs as first line therapy and obtaining an MR3.0 (after 6 months; p = 0.003) or an MR4.0 (after 12 months; p = 0.019) displayed significantly shorter HTs than individuals lacking these molecular responses. Our findings suggest that BCR-ABL1 DTs and HTs are reliable tools to, respectively, identify subjects in MR3.0 that are failing their assigned TKI or to recognize patients likely to achieve deep molecular responses that should be considered for treatment discontinuation
Cost-benefit ratio of secondary prophylaxis in young-adult severe haemophiliacs: towards a quality of life-oriented treatment
Whole-exome analysis in osteosarcoma to identify a personalized therapy
Osteosarcoma is the most common pediatric primary non-hematopoietic bone
tumor. Survival of these young patients is related to the response to chemotherapy and
development of metastases. Despite many advances in cancer research, chemotherapy
regimens for osteosarcoma are still based on non-selective cytotoxic drugs. It is essential
to investigate new specific molecular therapies for osteosarcoma to increase the survival
rate of these patients. We performed exomic sequence analyses of 8 diagnostic biopsies
of patients with conventional high grade osteosarcoma to advance our understanding
of their genetic underpinnings and to correlate the genetic alteration with the clinical
and pathological features of each patient to identify a personalized therapy.
We identified 18,275 somatic variations in 8,247 genes and we found three
mutated genes in 7/8 (87%) samples (KIF1B, NEB and KMT2C). KMT2C showed the
highest number of variations; it is an important component of a histone H3 lysine 4
methyltransferase complex and it is one of the histone modifiers previously implicated
in carcinogenesis, never studied in osteosarcoma. Moreover, we found a group of 15
genes that showed variations only in patients that did not respond to therapy and
developed metastasis and some of these genes are involved in carcinogenesis and
tumor progression in other tumors.
These data could offer the opportunity to get a key molecular target to identify
possible new strategies for early diagnosis and new therapeutic approaches for
osteosarcoma and to provide a tailored treatment for each patient based on their
genetic profile
Assortativity Decreases the Robustness of Interdependent Networks
It was recently recognized that interdependencies among different networks
can play a crucial role in triggering cascading failures and hence system-wide
disasters. A recent model shows how pairs of interdependent networks can
exhibit an abrupt percolation transition as failures accumulate. We report on
the effects of topology on failure propagation for a model system consisting of
two interdependent networks. We find that the internal node correlations in
each of the two interdependent networks significantly changes the critical
density of failures that triggers the total disruption of the two-network
system. Specifically, we find that the assortativity (i.e. the likelihood of
nodes with similar degree to be connected) within a single network decreases
the robustness of the entire system. The results of this study on the influence
of assortativity may provide insights into ways of improving the robustness of
network architecture, and thus enhances the level of protection of critical
infrastructures
- …