84 research outputs found

    A Collection of Challenging Optimization Problems in Science, Engineering and Economics

    Full text link
    Function optimization and finding simultaneous solutions of a system of nonlinear equations (SNE) are two closely related and important optimization problems. However, unlike in the case of function optimization in which one is required to find the global minimum and sometimes local minima, a database of challenging SNEs where one is required to find stationary points (extrama and saddle points) is not readily available. In this article, we initiate building such a database of important SNE (which also includes related function optimization problems), arising from Science, Engineering and Economics. After providing a short review of the most commonly used mathematical and computational approaches to find solutions of such systems, we provide a preliminary list of challenging problems by writing the Mathematical formulation down, briefly explaning the origin and importance of the problem and giving a short account on the currently known results, for each of the problems. We anticipate that this database will not only help benchmarking novel numerical methods for solving SNEs and function optimization problems but also will help advancing the corresponding research areas.Comment: Accepted as an invited contribution to the special session on Evolutionary Computation for Nonlinear Equation Systems at the 2015 IEEE Congress on Evolutionary Computation (at Sendai International Center, Sendai, Japan, from 25th to 28th May, 2015.

    Recent Advances in Computational Methods for the Power Flow Equations

    Get PDF
    The power flow equations are at the core of most of the computations for designing and operating electric power systems. The power flow equations are a system of multivariate nonlinear equations which relate the power injections and voltages in a power system. A plethora of methods have been devised to solve these equations, starting from Newton-based methods to homotopy continuation and other optimization-based methods. While many of these methods often efficiently find a high-voltage, stable solution due to its large basin of attraction, most of the methods struggle to find low-voltage solutions which play significant role in certain stability-related computations. While we do not claim to have exhausted the existing literature on all related methods, this tutorial paper introduces some of the recent advances in methods for solving power flow equations to the wider power systems community as well as bringing attention from the computational mathematics and optimization communities to the power systems problems. After briefly reviewing some of the traditional computational methods used to solve the power flow equations, we focus on three emerging methods: the numerical polynomial homotopy continuation method, Groebner basis techniques, and moment/sum-of-squares relaxations using semidefinite programming. In passing, we also emphasize the importance of an upper bound on the number of solutions of the power flow equations and review the current status of research in this direction.Comment: 13 pages, 2 figures. Submitted to the Tutorial Session at IEEE 2016 American Control Conferenc
    • …
    corecore