84 research outputs found
A Collection of Challenging Optimization Problems in Science, Engineering and Economics
Function optimization and finding simultaneous solutions of a system of
nonlinear equations (SNE) are two closely related and important optimization
problems. However, unlike in the case of function optimization in which one is
required to find the global minimum and sometimes local minima, a database of
challenging SNEs where one is required to find stationary points (extrama and
saddle points) is not readily available. In this article, we initiate building
such a database of important SNE (which also includes related function
optimization problems), arising from Science, Engineering and Economics. After
providing a short review of the most commonly used mathematical and
computational approaches to find solutions of such systems, we provide a
preliminary list of challenging problems by writing the Mathematical
formulation down, briefly explaning the origin and importance of the problem
and giving a short account on the currently known results, for each of the
problems. We anticipate that this database will not only help benchmarking
novel numerical methods for solving SNEs and function optimization problems but
also will help advancing the corresponding research areas.Comment: Accepted as an invited contribution to the special session on
Evolutionary Computation for Nonlinear Equation Systems at the 2015 IEEE
Congress on Evolutionary Computation (at Sendai International Center, Sendai,
Japan, from 25th to 28th May, 2015.
Recent Advances in Computational Methods for the Power Flow Equations
The power flow equations are at the core of most of the computations for
designing and operating electric power systems. The power flow equations are a
system of multivariate nonlinear equations which relate the power injections
and voltages in a power system. A plethora of methods have been devised to
solve these equations, starting from Newton-based methods to homotopy
continuation and other optimization-based methods. While many of these methods
often efficiently find a high-voltage, stable solution due to its large basin
of attraction, most of the methods struggle to find low-voltage solutions which
play significant role in certain stability-related computations. While we do
not claim to have exhausted the existing literature on all related methods,
this tutorial paper introduces some of the recent advances in methods for
solving power flow equations to the wider power systems community as well as
bringing attention from the computational mathematics and optimization
communities to the power systems problems. After briefly reviewing some of the
traditional computational methods used to solve the power flow equations, we
focus on three emerging methods: the numerical polynomial homotopy continuation
method, Groebner basis techniques, and moment/sum-of-squares relaxations using
semidefinite programming. In passing, we also emphasize the importance of an
upper bound on the number of solutions of the power flow equations and review
the current status of research in this direction.Comment: 13 pages, 2 figures. Submitted to the Tutorial Session at IEEE 2016
American Control Conferenc
- …