327 research outputs found
Connectivity of inhomogeneous random graphs
We find conditions for the connectivity of inhomogeneous random graphs with
intermediate density. Our results generalize the classical result for G(n, p),
when p = c log n/n. We draw n independent points X_i from a general
distribution on a separable metric space, and let their indices form the vertex
set of a graph. An edge (i,j) is added with probability min(1, \K(X_i,X_j) log
n/n), where \K \ge 0 is a fixed kernel. We show that, under reasonably weak
assumptions, the connectivity threshold of the model can be determined.Comment: 13 pages. To appear in Random Structures and Algorithm
Width and mode of the profile for some random trees of logarithmic height
We propose a new, direct, correlation-free approach based on central moments
of profiles to the asymptotics of width (size of the most abundant level) in
some random trees of logarithmic height. The approach is simple but gives
precise estimates for expected width, central moments of the width and almost
sure convergence. It is widely applicable to random trees of logarithmic
height, including recursive trees, binary search trees, quad trees,
plane-oriented ordered trees and other varieties of increasing trees.Comment: Published at http://dx.doi.org/10.1214/105051606000000187 in the
Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute
of Mathematical Statistics (http://www.imstat.org
- …