2,404 research outputs found
Nuclear Track Detectors. Searches for Exotic Particles
We used Nuclear Track Detectors (NTD) CR39 and Makrofol for many purposes: i)
Exposures at the SPS and at lower energy accelerator heavy ion beams for
calibration purposes and for fragmentation studies. ii) Searches for GUT and
Intermediate Mass Magnetic Monopoles (IMM), nuclearites, Q-balls and
strangelets in the cosmic radiation. The MACRO experiment in the Gran Sasso
underground lab, with ~1000 m^2 of CR39 detectors (plus scintillators and
streamer tubes), established an upper limit for superheavy GUT poles at the
level of 1.4x10^-16 cm^-2 s^-1 sr^-1 for 4x10^-5 <beta<1. The SLIM experiment
at the high altitude Chacaltaya lab (5230 m a.s.l.), using 427 m^2 of CR39
detectors exposed for 4.22 y, gave an upper limit for IMMs of ~1.3x10^-15 cm^-2
s^-1 sr^-1. The experiments yielded interesting upper limits also on the fluxes
of the other mentioned exotic particles. iii) Environmental studies, radiation
monitoring, neutron dosimetry.Comment: Talk given at "New Trends In High-Energy Physics" (experiment,
phenomenology, theory) Yalta, Crimea, Ukraine, September 27-October 4, 200
Experimental Bounds on Masses and Fluxes of Nontopological Solitons
We have re-analyzed the results of various experiments which were not
originally interested as searches for the Q-ball or the Fermi-ball. Based on
these analyses, in addition to the available data on Q-balls, we obtained
rather stringent bounds on flux, mass and typical energy scale of Q-balls as
well as Fermi-balls. In case these nontopological solitons are the main
component of the dark matter of the Galaxy, we found that only such solitons
with very large quantum numbers are allowed. We also estimate how sensitive
future experiments will be in the search for Q-balls and Fermi-balls.Comment: 19 pages, 7 eps figures, RevTeX, psfig.st
Confronting Spin Flavor Solutions of the Solar Neutrino Problem with current and future solar neutrino data
We show that spin flavor precession solutions to the solar neutrino problem,
although preferred by the latest solar data, are ruled out by the first results
from the KamLAND reactor experiment, at more than 3_sigma. An illustrative chi2
plot comparing these descriptions with oscillations is given.Comment: new appendix added discussing the impact of the KamLAND data. This
updates the one published in Phys.Rev.D66:093009,200
Search for massive rare particles with MACRO
Massive rare particles have been searched for in the penetrating cosmic
radiation using the MACRO apparatus at the Gran Sasso National Laboratories.
Liquid scintillators, streamer tubes and nuclear track detectors have been used
to search for magnetic monopoles (MMs).
Based on no observation of such signals, stringent flux limits are
established for MMs as slow as a few 10^(-5)c. The methods based on the
scintillator and on the nuclear track subdetectors were also applied to search
for nuclearites. Preliminary results of the searches for charged Q-balls are
also presented.Comment: 20 pages, 9 EPS figures included with epsfi
Neutrino astronomy with the MACRO detector
High energy gamma ray astronomy is now a well established field and several
sources have been discovered in the region from a few GeV up to several TeV. If
sources involving hadronic processes exist, the production of photons would be
accompanied by neutrinos too. Other possible neutrino sources could be related
to the annihilation of WIMPs at the center of galaxies with black holes.
We present the results of a search for point-like sources using 1100
upward-going muons produced by neutrino interactions in the rock below and
inside the MACRO detector in the underground Gran Sasso Laboratory. These data
show no evidence for a possible neutrino point-like source or for possible
correlations between gamma ray bursts and neutrinos. They have been used to set
flux upper limits for candidate point-like sources which are in the range
10^-14-10^-15 cm-2 s-1.Comment: 37 pages, 15 figures, replacement due to a typo in tab. 6, AASLaTex,
submitted to Ap
Limits on dark matter WIMPs using upward-going muons in the MACRO detector
We perform an indirect search for Weakly Interacting Massive Particles
(WIMPs) using the MACRO detector to look for neutrino-induced upward-going
muons resulting from the annihilation of WIMPs trapped in the Sun and Earth.
The search is conducted in various angular cones centered on the Sun and Earth
to accommodate a range of WIMP masses. No significant excess over the
background from atmospheric neutrinos is seen and limits are placed on the
upward-going muon fluxes from Sun and Earth. These limits are used to constrain
neutralino particle parameters from supersymmetric theory, including those
suggested by recent results from DAMA/NaI.Comment: 14 pages, 7 figures, submitted to Phys. Rev.
Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC
The uncertainty on the calorimeter energy response to jets of particles is
derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the
calorimeter response to single isolated charged hadrons is measured and
compared to the Monte Carlo simulation using proton-proton collisions at
centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009
and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter
response to specific types of particles (positively and negatively charged
pions, protons, and anti-protons) is measured and compared to the Monte Carlo
predictions. Finally, the jet energy scale uncertainty is determined by
propagating the response uncertainty for single charged and neutral particles
to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3%
for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table,
submitted to European Physical Journal