96 research outputs found

    Arbitrage-free prediction of the implied volatility smile

    Get PDF
    This paper gives an arbitrage-free prediction for future prices of an arbitrary co-terminal set of options with a given maturity, based on the observed time series of these option prices. The statistical analysis of such a multi-dimensional time series of option prices corresponding to nn strikes (with nn large, e.g. nā‰„40n\geq 40) and the same maturity, is a difficult task due to the fact that option prices at any moment in time satisfy non-linear and non-explicit no-arbitrage restrictions. Hence any nn-dimensional time series model also has to satisfy these implicit restrictions at each time step, a condition that is impossible to meet since the model innovations can take arbitrary values. We solve this problem for any n\in\NN in the context of Foreign Exchange (FX) by first encoding the option prices at each time step in terms of the parameters of the corresponding risk-neutral measure and then performing the time series analysis in the parameter space. The option price predictions are obtained from the predicted risk-neutral measure by effectively integrating it against the corresponding option payoffs. The non-linear transformation between option prices and the risk-neutral parameters applied here is \textit{not} arbitrary: it is the standard mapping used by market makers in the FX option markets (the SABR parameterisation) and is given explicitly in closed form. Our method is not restricted to the FX asset class nor does it depend on the type of parameterisation used. Statistical analysis of FX market data illustrates that our arbitrage-free predictions outperform the naive random walk forecasts, suggesting a potential for building management strategies for portfolios of derivative products, akin to the ones widely used in the underlying equity and futures markets.Comment: 18 pages, 2 figures; a shorter version of this paper has appeared as a Technical Paper in Risk (30 April 2014) under the title "Smile transformation for price prediction

    Control Variates for Reversible MCMC Samplers

    Full text link
    A general methodology is introduced for the construction and effective application of control variates to estimation problems involving data from reversible MCMC samplers. We propose the use of a specific class of functions as control variates, and we introduce a new, consistent estimator for the values of the coefficients of the optimal linear combination of these functions. The form and proposed construction of the control variates is derived from our solution of the Poisson equation associated with a specific MCMC scenario. The new estimator, which can be applied to the same MCMC sample, is derived from a novel, finite-dimensional, explicit representation for the optimal coefficients. The resulting variance-reduction methodology is primarily applicable when the simulated data are generated by a conjugate random-scan Gibbs sampler. MCMC examples of Bayesian inference problems demonstrate that the corresponding reduction in the estimation variance is significant, and that in some cases it can be quite dramatic. Extensions of this methodology in several directions are given, including certain families of Metropolis-Hastings samplers and hybrid Metropolis-within-Gibbs algorithms. Corresponding simulation examples are presented illustrating the utility of the proposed methods. All methodological and asymptotic arguments are rigorously justified under easily verifiable and essentially minimal conditions.Comment: 44 pages; 6 figures; 5 table

    Copula-like Variational Inference

    Get PDF
    This paper considers a new family of variational distributions motivated by Sklar's theorem. This family is based on new copula-like densities on the hypercube with non-uniform marginals which can be sampled efficiently, i.e. with a complexity linear in the dimension of state space. Then, the proposed variational densities that we suggest can be seen as arising from these copula-like densities used as base distributions on the hypercube with Gaussian quantile functions and sparse rotation matrices as normalizing flows. The latter correspond to a rotation of the marginals with complexity O(dlogā”d)\mathcal{O}(d \log d). We provide some empirical evidence that such a variational family can also approximate non-Gaussian posteriors and can be beneficial compared to Gaussian approximations. Our method performs largely comparably to state-of-the-art variational approximations on standard regression and classification benchmarks for Bayesian Neural Networks.Comment: 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canad

    Likelihood-based inference for correlated diffusions

    Get PDF
    We address the problem of likelihood based inference for correlated diffusion processes using Markov chain Monte Carlo (MCMC) techniques. Such a task presents two interesting problems. First, the construction of the MCMC scheme should ensure that the correlation coefficients are updated subject to the positive definite constraints of the diffusion matrix. Second, a diffusion may only be observed at a finite set of points and the marginal likelihood for the parameters based on these observations is generally not available. We overcome the first issue by using the Cholesky factorisation on the diffusion matrix. To deal with the likelihood unavailability, we generalise the data augmentation framework of Roberts and Stramer (2001 Biometrika 88(3):603-621) to d-dimensional correlated diffusions including multivariate stochastic volatility models. Our methodology is illustrated through simulation based experiments and with daily EUR /USD, GBP/USD rates together with their implied volatilities

    Scalable Bayesian Learning for State Space Models using Variational Inference with SMC Samplers

    Get PDF
    We present a scalable approach to performing approximate fully Bayesian inference in generic state space models. The proposed method is an alternative to particle MCMC that provides fully Bayesian inference of both the dynamic latent states and the static parameters of the model. We build up on recent advances in computational statistics that combine variational methods with sequential Monte Carlo sampling and we demonstrate the advantages of performing full Bayesian inference over the static parameters rather than just performing variational EM approximations. We illustrate how our approach enables scalable inference in multivariate stochastic volatility models and self-exciting point process models that allow for flexible dynamics in the latent intensity function.Comment: To appear in AISTATS 201

    Inference for stochastic volatility model using time change transformations

    Get PDF
    We address the problem of parameter estimation for diffusion driven stochastic volatility models through Markov chain Monte Carlo (MCMC). To avoid degeneracy issues we introduce an innovative reparametrisation defined through transformations that operate on the time scale of the diffusion. A novel MCMC scheme which overcomes the inherent difficulties of time change transformations is also presented. The algorithm is fast to implement and applies to models with stochastic volatility. The methodology is tested through simulation based experiments and illustrated on data consisting of US treasury bill rates.Imputation, Markov chain Monte Carlo, Stochastic volatility

    Likelihood-based inference for correlated diffusions

    Get PDF
    We address the problem of likelihood based inference for correlated diffusion processes using Markov chain Monte Carlo (MCMC) techniques. Such a task presents two interesting problems. First, the construction of the MCMC scheme should ensure that the correlation coefficients are updated subject to the positive definite constraints of the diffusion matrix. Second, a diffusion may only be observed at a finite set of points and the marginal likelihood for the parameters based on these observations is generally not available. We overcome the first issue by using the Cholesky factorisation on the diffusion matrix. To deal with the likelihood unavailability, we generalise the data augmentation framework of Roberts and Stramer (2001 Biometrika 88(3):603-621) to d-dimensional correlated diffusions including multivariate stochastic volatility models. Our methodology is illustrated through simulation based experiments and with daily EUR /USD, GBP/USD rates together with their implied volatilities.Markov chain Monte Carlo, Multivariate stochastic volatility, Multivariate CIR model, Cholesky Factorisation
    • ā€¦
    corecore