622 research outputs found

    On the Correlation between the Magnetic Activity Levels, the Metallicities and the Radii of Low-Mass Stars

    Get PDF
    The recent burst in the number of radii measurements of very low-mass stars from eclipsing binaries and interferometry of single stars has opened more questions about what can be causing the discrepancy between the observed radii and the ones predicted by the models. The two main explanations being proposed are a correlation between the radius of the stars and their activity levels or their metallicities. This paper presents a study of such correlations using all the data published to date. The study also investigates correlations between the radii deviation from the models and the masses of the stars. There is no clear correlation between activity level and radii for the single stars in the sample. Those single stars are slow rotators with typical velocities v_rot sini < 3.0 km s^-1. A clear correlation however exists in the case of the faster rotating members of binaries. This result is based on the of X-ray emission levels of the stars. There also appears to be an increase in the deviation of the radii of single stars from the models as a function of metallicity, as previously indicated by Berger et al. (2006). The stars in binaries do not seem to follow the same trend. Finally, the Baraffe et al. (1998) models reproduce well the radius observations below 0.30-0.35Msun, where the stars become fully convective, although this result is preliminary since almost all the sample stars in that mass range are slow rotators and metallicities have not been measured for most of them. The results in this paper indicate that stellar activity and metallicity play an important role on the determination of the radius of very low-mass stars, at least above 0.35Msun.Comment: 22 pages, 4 figures. Accepted for publication on Ap

    A Dedicated M-Dwarf Planet Search Using The Hobby-Eberly Telescope

    Full text link
    We present first results of our planet search program using the 9.2 meter Hobby-Eberly Telescope (HET) at McDonald Observatory to detect planets around M-type dwarf stars via high-precision radial velocity (RV) measurements. Although more than 100 extrasolar planets have been found around solar-type stars of spectral type F to K, there is only a single M-dwarf (GJ 876, Delfosse et al. 1998; Marcy et al. 1998; Marcy et al. 2001) known to harbor a planetary system. With the current incompleteness of Doppler surveys with respect to M-dwarfs, it is not yet possible to decide whether this is due to a fundamental difference in the formation history and overall frequency of planetary systems in the low-mass regime of the Hertzsprung-Russell diagram, or simply an observational bias. Our HET M-dwarf survey plans to survey 100 M-dwarfs in the next 3 to 4 years with the primary goal to answer this question. Here we present the results from the first year of the survey which show that our routine RV-precision for M-dwarfs is 6 m/s. We found that GJ 864 and GJ 913 are binary systems with yet undetermined periods, while 5 out of 39 M-dwarfs reveal a high RV-scatter and represent candidates for having short-periodic planetary companions. For one of them, GJ 436 (rms = 20.6 m/s), we have already obtained follow-up observations but no periodic signal is present in the RV-data.Comment: 12 pages, 14 figures, accepted for publication in the Astronomical Journa

    Discovery of an M4 Spectroscopic Binary in Upper Scorpius: A Calibration Point for Young Low-Mass Evolutionary Models

    Full text link
    We report the discovery of a new low-mass spectroscopic (SB2) stellar binary system in the star-forming region of Upper Scorpius. This object, UScoCTIO5, was discovered by Ardila (2000), who assigned it a spectral class of M4. A KeckI HIRES spectrum revealed it to be double-lined, and we then carried out a program at several observatories to determine its orbit. The orbital period is 34 days, and the eccentricity is nearly 0.3. The importance of such a discovery is that it can be used to help calibrate evolutionary models at low masses and young ages. This is one of the outstanding problems in the study of formation mechanisms and initial mass functions at low masses. The orbit allows us to place a lower limit of 0.64 +- 0.02 M_sol on the total system mass. The components appear to be of almost equal mass. We are able to show that this mass is significantly higher than predicted by evolutionary models for an object of this luminosity and age, in agreement with other recent results. More precise determination of the temperature and surface gravity of the components would be helpful in further solidifying this conclusion.Comment: 17 pages, 4 figures, accepted for publication in Ap

    Design Considerations for a Ground-based Transit Search for Habitable Planets Orbiting M dwarfs

    Full text link
    By targeting nearby M dwarfs, a transit search using modest equipment is capable of discovering planets as small as 2 Earth radii in the habitable zones of their host stars. The MEarth Project, a future transit search, aims to employ a network of ground-based robotic telescopes to monitor M dwarfs in the northern hemisphere with sufficient precision and cadence to detect such planets. Here we investigate the design requirements for the MEarth Project. We evaluate the optimal bandpass, and the necessary field of view, telescope aperture, and telescope time allocation on a star-by-star basis, as is possible for the well-characterized nearby M dwarfs. Through these considerations, 1,976 late M dwarfs (R < 0.33 Rsun) emerge as favorable targets for transit monitoring. Based on an observational cadence and on total telescope time allocation tailored to recover 90% of transit signals from planets in habitable zone orbits, we find that a network of ten 30 cm telescopes could survey these 1,976 M dwarfs in less than 3 years. A null result from this survey would set an upper limit (at 99% confidence) of 17% for the rate of occurrence of planets larger than 2 Earth radii in the habitable zones of late M dwarfs, and even stronger constraints for planets lying closer than the habitable zone. If the true occurrence rate of habitable planets is 10%, the expected yield would be 2.6 planets.Comment: accepted to PAS

    Metallicities of M Dwarf Planet Hosts from Spectral Synthesis

    Get PDF
    We present the first spectroscopic metallicities of three M dwarfs with known or candidate planetary mass companions. We have analyzed high resolution, high signal-to-noise spectra of these stars which we obtained at McDonald Observatory. Our analysis technique is based on spectral synthesis of atomic and molecular features using recently revised cool-star model atmospheres and spectrum synthesis code. The technique has been shown to yield results consistent with the analyses of solar-type stars and allows measurements of M dwarf [M/H] values to 0.12 dex precision. From our analysis, we find [M/H] = -0.12, -0.32, and -0.33 for GJ 876, GJ 436, and GJ 581 respectively. These three M dwarf planet hosts have sub-solar metallicities, a surprising departure from the trend observed in FGK-type stars. This study is the first part of our ongoing work to determine the metallicities of the M dwarfs included in the McDonald Observatory planet search program.Comment: 13 pages, 2 figures, accepted for publication in ApJ

    Metallicity of M dwarfs IV. A high-precision [Fe/H] and Teff technique from high-resolution optical spectra for M dwarfs

    Full text link
    Aims. In this work we develop a technique to obtain high precision determinations of both metallicity and effective temperature of M dwarfs in the optical. Methods. A new method is presented that makes use of the information of 4104 lines in the 530-690 nm spectral region. It consists in the measurement of pseudo equivalent widths and their correlation with established scales of [Fe/H] and TeffT_{eff}. Results. Our technique achieves a rmsrms of 0.08¬Ī\pm0.01 for [Fe/H], 91¬Ī\pm13 K for TeffT_{eff}, and is valid in the (-0.85, 0.26 dex), (2800, 4100 K), and (M0.0, M5.0) intervals for [Fe/H], TeffT_{eff} and spectral type respectively. We also calculated the RMSEV_{V} which estimates uncertainties of the order of 0.12 dex for the metallicity and of 293 K for the effective temperature. The technique has an activity limit and should only be used for stars with log‚Ā°LHőĪ/Lbol<‚ąí4.0\log{L_{H_{\alpha}}/L_{bol}} < -4.0. Our method is available online at \url{http://www.astro.up.pt/resources/mcal}.Comment: Accepted in Astronomy and Astrophysics. Updated one important reference in the introduction. Some typos correcte

    The Big Occulting Steerable Satellite (BOSS)

    Get PDF
    Natural (such as lunar) occultations have long been used to study sources on small angular scales, while coronographs have been used to study high contrast sources. We propose launching the Big Occulting Steerable Satellite (BOSS), a large steerable occulting satellite to combine both of these techniques. BOSS will have several advantages over standard occulting bodies. BOSS would block all but about 4e-5 of the light at 1 micron in the region of interest around the star for planet detections. Because the occultation occurs outside the telescope, scattering inside the telescope does not degrade this performance. BOSS could be combined with a space telescope at the Earth-Sun L2 point to yield very long integration times, in excess of 3000 seconds. If placed in Earth orbit, integration times of 160--1600 seconds can be achieved from most major telescope sites for objects in over 90% of the sky. Applications for BOSS include direct imaging of planets around nearby stars. Planets separated by as little as 0.1--0.25 arcseconds from the star they orbit could be seen down to a relative intensity as little as 1e-9 around a magnitude 8 (or brighter) star. Other applications include ultra-high resolution imaging of compound sources, such as microlensed stars and quasars, down to a resolution as little as 0.1 milliarcseconds.Comment: 25pages, 4 figures, uses aaspp4, rotate, and epsfig. Submitted to the Astrophysical Journal. For more details see http://erebus.phys.cwru.edu/~boss

    Interferometric Astrometry of the Low-mass Binary Gl 791.2 (= HU Del) Using Hubble Space Telescope Fine Guidance Sensor 3: Parallax and Component Masses

    Full text link
    With fourteen epochs of fringe tracking data spanning 1.7y from Fine Guidance Sensor 3 we have obtained a parallax (pi_abs=113.1 +- 0.3 mas) and perturbation orbit for Gl 791.2A. Contemporaneous fringe scanning observations yield only three clear detections of the secondary on both interferometer axes. They provide a mean component magnitude difference, Delta V = 3.27 +- 0.10. The period (P = 1.4731 yr) from the perturbation orbit and the semi-major axis (a = 0.963 +- 0.007 AU) from the measured component separations with our parallax provide a total system mass M_A + M_B = 0.412 +- 0.009 M_sun. Component masses are M_A=0.286 +- 0.006 M_sun and M_B = 0.126 +- 0.003 M_sun. Gl 791.2A and B are placed in a sparsely populated region of the lower main sequence mass-luminosity relation where they help define the relation because the masses have been determined to high accuracy, with errors of only 2%.Comment: 19 pages, 5 figures. The paper is to appear in August 2000 A
    • ‚Ķ
    corecore