108 research outputs found
Phase retrieval with a multivariate Von Mises prior: from a Bayesian formulation to a lifting solution
In this paper, we investigate a new method for phase recovery when prior
information on the missing phases is available. In particular, we propose to
take into account this information in a generic fashion by means of a
multivariate Von Mises dis- tribution. Building on a Bayesian formulation (a
Maximum A Posteriori estimation), we show that the problem can be expressed
using a Mahalanobis distance and be solved by a lifting optimization procedure.Comment: Preprint of the paper published in the proc. of ICASSP'1
A Statistically Principled and Computationally Efficient Approach to Speech Enhancement using Variational Autoencoders
Recent studies have explored the use of deep generative models of speech
spectra based of variational autoencoders (VAEs), combined with unsupervised
noise models, to perform speech enhancement. These studies developed iterative
algorithms involving either Gibbs sampling or gradient descent at each step,
making them computationally expensive. This paper proposes a variational
inference method to iteratively estimate the power spectrogram of the clean
speech. Our main contribution is the analytical derivation of the variational
steps in which the en-coder of the pre-learned VAE can be used to estimate the
varia-tional approximation of the true posterior distribution, using the very
same assumption made to train VAEs. Experiments show that the proposed method
produces results on par with the afore-mentioned iterative methods using
sampling, while decreasing the computational cost by a factor 36 to reach a
given performance .Comment: Submitted to INTERSPEECH 201
Acoustic Space Learning for Sound Source Separation and Localization on Binaural Manifolds
In this paper we address the problems of modeling the acoustic space
generated by a full-spectrum sound source and of using the learned model for
the localization and separation of multiple sources that simultaneously emit
sparse-spectrum sounds. We lay theoretical and methodological grounds in order
to introduce the binaural manifold paradigm. We perform an in-depth study of
the latent low-dimensional structure of the high-dimensional interaural
spectral data, based on a corpus recorded with a human-like audiomotor robot
head. A non-linear dimensionality reduction technique is used to show that
these data lie on a two-dimensional (2D) smooth manifold parameterized by the
motor states of the listener, or equivalently, the sound source directions. We
propose a probabilistic piecewise affine mapping model (PPAM) specifically
designed to deal with high-dimensional data exhibiting an intrinsic piecewise
linear structure. We derive a closed-form expectation-maximization (EM)
procedure for estimating the model parameters, followed by Bayes inversion for
obtaining the full posterior density function of a sound source direction. We
extend this solution to deal with missing data and redundancy in real world
spectrograms, and hence for 2D localization of natural sound sources such as
speech. We further generalize the model to the challenging case of multiple
sound sources and we propose a variational EM framework. The associated
algorithm, referred to as variational EM for source separation and localization
(VESSL) yields a Bayesian estimation of the 2D locations and time-frequency
masks of all the sources. Comparisons of the proposed approach with several
existing methods reveal that the combination of acoustic-space learning with
Bayesian inference enables our method to outperform state-of-the-art methods.Comment: 19 pages, 9 figures, 3 table
High-Dimensional Regression with Gaussian Mixtures and Partially-Latent Response Variables
In this work we address the problem of approximating high-dimensional data
with a low-dimensional representation. We make the following contributions. We
propose an inverse regression method which exchanges the roles of input and
response, such that the low-dimensional variable becomes the regressor, and
which is tractable. We introduce a mixture of locally-linear probabilistic
mapping model that starts with estimating the parameters of inverse regression,
and follows with inferring closed-form solutions for the forward parameters of
the high-dimensional regression problem of interest. Moreover, we introduce a
partially-latent paradigm, such that the vector-valued response variable is
composed of both observed and latent entries, thus being able to deal with data
contaminated by experimental artifacts that cannot be explained with noise
models. The proposed probabilistic formulation could be viewed as a
latent-variable augmentation of regression. We devise expectation-maximization
(EM) procedures based on a data augmentation strategy which facilitates the
maximum-likelihood search over the model parameters. We propose two
augmentation schemes and we describe in detail the associated EM inference
procedures that may well be viewed as generalizations of a number of EM
regression, dimension reduction, and factor analysis algorithms. The proposed
framework is validated with both synthetic and real data. We provide
experimental evidence that our method outperforms several existing regression
techniques
Rectified binaural ratio: A complex T-distributed feature for robust sound localization
International audienceMost existing methods in binaural sound source localization rely on some kind of aggregation of phase-and level-difference cues in the time-frequency plane. While different aggregation schemes exist, they are often heuristic and suffer in adverse noise conditions. In this paper, we introduce the rectified binaural ratio as a new feature for sound source localization. We show that for Gaussian-process point source signals corrupted by stationary Gaussian noise, this ratio follows a complex t-distribution with explicit parameters. This new formulation provides a principled and statistically sound way to aggregate binaural features in the presence of noise. We subsequently derive two simple and efficient methods for robust relative transfer function and time-delay estimation. Experiments on heavily corrupted simulated and speech signals demonstrate the robustness of the proposed scheme
Hyper-Spectral Image Analysis with Partially-Latent Regression and Spatial Markov Dependencies
Hyper-spectral data can be analyzed to recover physical properties at large
planetary scales. This involves resolving inverse problems which can be
addressed within machine learning, with the advantage that, once a relationship
between physical parameters and spectra has been established in a data-driven
fashion, the learned relationship can be used to estimate physical parameters
for new hyper-spectral observations. Within this framework, we propose a
spatially-constrained and partially-latent regression method which maps
high-dimensional inputs (hyper-spectral images) onto low-dimensional responses
(physical parameters such as the local chemical composition of the soil). The
proposed regression model comprises two key features. Firstly, it combines a
Gaussian mixture of locally-linear mappings (GLLiM) with a partially-latent
response model. While the former makes high-dimensional regression tractable,
the latter enables to deal with physical parameters that cannot be observed or,
more generally, with data contaminated by experimental artifacts that cannot be
explained with noise models. Secondly, spatial constraints are introduced in
the model through a Markov random field (MRF) prior which provides a spatial
structure to the Gaussian-mixture hidden variables. Experiments conducted on a
database composed of remotely sensed observations collected from the Mars
planet by the Mars Express orbiter demonstrate the effectiveness of the
proposed model.Comment: 12 pages, 4 figures, 3 table
Co-Localization of Audio Sources in Images Using Binaural Features and Locally-Linear Regression
This paper addresses the problem of localizing audio sources using binaural
measurements. We propose a supervised formulation that simultaneously localizes
multiple sources at different locations. The approach is intrinsically
efficient because, contrary to prior work, it relies neither on source
separation, nor on monaural segregation. The method starts with a training
stage that establishes a locally-linear Gaussian regression model between the
directional coordinates of all the sources and the auditory features extracted
from binaural measurements. While fixed-length wide-spectrum sounds (white
noise) are used for training to reliably estimate the model parameters, we show
that the testing (localization) can be extended to variable-length
sparse-spectrum sounds (such as speech), thus enabling a wide range of
realistic applications. Indeed, we demonstrate that the method can be used for
audio-visual fusion, namely to map speech signals onto images and hence to
spatially align the audio and visual modalities, thus enabling to discriminate
between speaking and non-speaking faces. We release a novel corpus of real-room
recordings that allow quantitative evaluation of the co-localization method in
the presence of one or two sound sources. Experiments demonstrate increased
accuracy and speed relative to several state-of-the-art methods.Comment: 15 pages, 8 figure
Robust Head-Pose Estimation Based on Partially-Latent Mixture of Linear Regressions
Head-pose estimation has many applications, such as social event analysis,
human-robot and human-computer interaction, driving assistance, and so forth.
Head-pose estimation is challenging because it must cope with changing
illumination conditions, variabilities in face orientation and in appearance,
partial occlusions of facial landmarks, as well as bounding-box-to-face
alignment errors. We propose tu use a mixture of linear regressions with
partially-latent output. This regression method learns to map high-dimensional
feature vectors (extracted from bounding boxes of faces) onto the joint space
of head-pose angles and bounding-box shifts, such that they are robustly
predicted in the presence of unobservable phenomena. We describe in detail the
mapping method that combines the merits of unsupervised manifold learning
techniques and of mixtures of regressions. We validate our method with three
publicly available datasets and we thoroughly benchmark four variants of the
proposed algorithm with several state-of-the-art head-pose estimation methods.Comment: 12 pages, 5 figures, 3 table
- …