18 research outputs found
Ab initio study of the thermodynamic properties of rare-earthmagnesium intermetallics MgRE (RE=Y, Dy, Pr, Tb)
We have performed an ab initio study of the thermodynamical properties of
rare-earth-magnesium intermetallic compounds MgRE (RE=Y, Dy, Pr, Tb) with
CsCl-type B2-type structures. The calculations have been carried out the
density functional theory and density functional perturbation theory in
combination with the quasiharmonic approximation. The phonon-dispersion curves
and phonon total and partial density of states have been investigated. Our
results show that the contribution of RE atoms is dominant in phonon frequency,
and this character agrees with the previous discussion by using atomistic
simulations. The temperature dependence of various quantities such as the
thermal expansions, bulk modulus, and the heat capacity are obtained. The
electronic contributions to the specific heat are discussed, and found to be
important for the calculated MgRE intermetallics.Comment: 12 pages, 6 figure
ExoClock Project: An open platform for monitoring the ephemerides of Ariel targets with contributions from the public
The Ariel mission will observe spectroscopically around 1000 exoplanets to further characterise their atmospheres. For the mission to be as efficient as possible, a good knowledge of the planets' ephemerides is needed before its launch in 2028. While ephemerides for some planets are being refined on a per-case basis, an organised effort to collectively verify or update them when necessary does not exist. In this study, we introduce the ExoClock project, an open, integrated and interactive platform with the purpose of producing a confirmed list of ephemerides for the planets that will be observed by Ariel. The project has been developed in a manner to make the best use of all available resources: observations reported in the literature, observations from space instruments and, mainly, observations from ground-based telescopes, including both professional and amateur observatories. To facilitate inexperienced observers and at the same time achieve homogeneity in the results, we created data collection and validation protocols, educational material and easy to use interfaces, open to everyone. ExoClock was launched in September 2019 and now counts over 140 participants from more than 15 countries around the world. In this release, we report the results of observations obtained until the 15h of April 2020 for 119 Ariel candidate targets. In total, 632 observations were used to either verify or update the ephemerides of 83 planets. Additionally, we developed the Exoplanet Characterisation Catalogue (ECC), a catalogue built in a consistent way to assist the ephemeris refinement process. So far, the collaborative open framework of the ExoClock project has proven to be highly efficient in coordinating scientific efforts involving diverse audiences. Therefore, we believe that it is a paradigm that can be applied in the future for other research purposes, too
ExoClock Project. III. 450 New Exoplanet Ephemerides from Ground and Space Observations
The ExoClock project has been created to increase the efficiency of the Ariel mission. It will achieve this by continuously monitoring and updating the ephemerides of Ariel candidates, in order to produce a consistent catalog of reliable and precise ephemerides. This work presents a homogenous catalog of updated ephemerides for 450 planets, generated by the integration of ∼18,000 data points from multiple sources. These sources include observations from ground-based telescopes (the ExoClock network and the Exoplanet Transit Database), midtime values from the literature, and light curves from space telescopes (Kepler, K2, and TESS). With all the above, we manage to collect observations for half of the postdiscovery years (median), with data that have a median uncertainty less than 1 minute. In comparison with the literature, the ephemerides generated by the project are more precise and less biased. More than 40% of the initial literature ephemerides had to be updated to reach the goals of the project, as they were either of low precision or drifting. Moreover, the integrated approach of the project enables both the monitoring of the majority of the Ariel candidates (95%), and also the identification of missing data. These results highlight the need for continuous monitoring to increase the observing coverage of the candidate planets. Finally, the extended observing coverage of planets allows us to detect trends (transit-timing variations) for a sample of 19 planets. All the products, data, and codes used in this work are open and accessible to the wider scientific community
ExoClock Project III: 450 new exoplanet ephemerides from ground and space observations
The ExoClock project has been created with the aim of increasing the
efficiency of the Ariel mission. It will achieve this by continuously
monitoring and updating the ephemerides of Ariel candidates over an extended
period, in order to produce a consistent catalogue of reliable and precise
ephemerides. This work presents a homogenous catalogue of updated ephemerides
for 450 planets, generated by the integration of 18000 data points from
multiple sources. These sources include observations from ground-based
telescopes (ExoClock network and ETD), mid-time values from the literature and
light-curves from space telescopes (Kepler/K2 and TESS). With all the above, we
manage to collect observations for half of the post-discovery years (median),
with data that have a median uncertainty less than one minute. In comparison
with literature, the ephemerides generated by the project are more precise and
less biased. More than 40\% of the initial literature ephemerides had to be
updated to reach the goals of the project, as they were either of low precision
or drifting. Moreover, the integrated approach of the project enables both the
monitoring of the majority of the Ariel candidates (95\%), and also the
identification of missing data. The dedicated ExoClock network effectively
supports this task by contributing additional observations when a gap in the
data is identified. These results highlight the need for continuous monitoring
to increase the observing coverage of the candidate planets. Finally, the
extended observing coverage of planets allows us to detect trends (TTVs -
Transit Timing Variations) for a sample of 19 planets. All products, data, and
codes used in this work are open and accessible to the wider scientific
community.Comment: Recommended for publication to ApJS (reviewer's comments
implemented). Main body: 13 pages, total: 77 pages, 7 figures, 7 tables. Data
available at http://doi.org/10.17605/OSF.IO/P298
Recommended from our members
ExoClock Project. III. 450 New Exoplanet Ephemerides from Ground and Space Observations
The ExoClock project has been created to increase the efficiency of the Ariel mission. It will achieve this by continuously monitoring and updating the ephemerides of Ariel candidates, in order to produce a consistent catalog of reliable and precise ephemerides. This work presents a homogenous catalog of updated ephemerides for 450 planets, generated by the integration of ∼18,000 data points from multiple sources. These sources include observations from ground-based telescopes (the ExoClock network and the Exoplanet Transit Database), midtime values from the literature, and light curves from space telescopes (Kepler, K2, and TESS). With all the above, we manage to collect observations for half of the postdiscovery years (median), with data that have a median uncertainty less than 1 minute. In comparison with the literature, the ephemerides generated by the project are more precise and less biased. More than 40% of the initial literature ephemerides had to be updated to reach the goals of the project, as they were either of low precision or drifting. Moreover, the integrated approach of the project enables both the monitoring of the majority of the Ariel candidates (95%), and also the identification of missing data. These results highlight the need for continuous monitoring to increase the observing coverage of the candidate planets. Finally, the extended observing coverage of planets allows us to detect trends (transit-timing variations) for a sample of 19 planets. All the products, data, and codes used in this work are open and accessible to the wider scientific community
A survey for variable young stars with small telescopes: VIII — Properties of 1687 Gaia selected members in 21 nearby clusters
The Hunting Outbursting Young Stars (HOYS) project performs long-term, optical, multi- filter, high cadence monitoring of 25 nearby young clusters and star forming regions. Utilising Gaia DR3 data we have identified about 17000 potential young stellar members in 45 coherent astrometric groups in these fields. Twenty one of them are clear young groups or clusters of stars within one kiloparsec and they contain 9143 Gaia selected potential members. The cluster distances, proper motions and membership numbers are determined. We analyse long term ( 7 yr) V, R, and I-band light curves from HOYS for 1687 of the potential cluster members. One quarter of the stars are variable in all three optical filters, and two thirds of these have light curves that are symmetric around the mean. Light curves affected by obscuration from circumstellar materials are more common than those affected by accretion bursts, by a factor of 2 – 4. The variability fraction in the clusters ranges from 10 to almost 100 percent, and correlates positively with the fraction of stars with detectable inner disks, indicating that a lot of variability is driven by the disk. About one in six variables shows detectable periodicity, mostly caused by magnetic spots. Two thirds of the periodic variables with disk excess emission are slow rotators, and amongst the stars without disk excess two thirds are fast rotators – in agreement with rotation being slowed down by the presence of a disk
A survey for variable young stars with small telescopes – VIII. Properties of 1687 Gaia selected members in 21 nearby clusters
The Hunting Outbursting Young Stars (HOYS) project performs long-term, optical, multi-filter, high cadence monitoring of 25 nearby young clusters and star forming regions. Utilising Gaia DR3 data we have identified about 17000 potential young stellar members in 45 coherent astrometric groups in these fields. Twenty one of them are clear young groups or clusters of stars within one kiloparsec and they contain 9143 Gaia selected potential members. The cluster distances, proper motions and membership numbers are determined. We analyse long term (≈ 7 yr) V, R, and I-band light curves from HOYS for 1687 of the potential cluster members. One quarter of the stars are variable in all three optical filters, and two thirds of these have light curves that are symmetric around the mean. Light curves affected by obscuration from circumstellar materials are more common than those affected by accretion bursts, by a factor of 2 – 4. The variability fraction in the clusters ranges from 10 to almost 100 percent, and correlates positively with the fraction of stars with detectable inner disks, indicating that a lot of variability is driven by the disk. About one in six variables shows detectable periodicity, mostly caused by magnetic spots. Two thirds of the periodic variables with disk excess emission are slow rotators, and amongst the stars without disk excess two thirds are fast rotators – in agreement with rotation being slowed down by the presence of a disk