14 research outputs found

    Energy Relevant Materials: Investigations Based on First Principles

    No full text
    Energy production, storage and efficient usage are all crucial factors for environmentally sound and sustainable future technologies. One important question concerns the refrigeration industry, where the energy efficiency of the presently used technologies is at best 40% of the theoretical Carnot limit. Magnetic refrigerators offer a modern low-energy demand and environmentally friendly alternative. Iron phosphide based materials have been proposed to be amongst the most promising candidates for working body of magnetic refrigerators. Hydrogen is one of the central elements on the most promising sources of renewable energy. Considerable international research focuses on finding good solid state materials for hydrogen storage. On the other hand, hydrogen gas is obtained from hydrogen containing chemical compounds, which after breaking the chemical bounds usually yield to a mixture of different gases. Palladium-silver alloys are frequently used for hydrogen separation membranes for producing purified hydrogen gas. All these applications need a fundamental understanding of the structural, magnetic, chemical and thermophysical properties of the involved solid state materials. In the present thesis ab initio electronic structure methods are used to study the crystallographic and magnetic properties of Fe2P based magneto-caloric compounds and the thermophysical properties of Pd-Ag binary alloys. Lattice stability of pure Fe2P and the effect of Si doping on the phase stability are presented. In contrast to the observation, for the ferromagnetic state the body centered orthorhombic structure (bco, space group Imm2) is predicted to have lower energy than the hexagonal structure (hex, space group P62m). The zero-point spin fluctuation energy difference is found to be large enough to stabilize the hex phase. For the paramagnetic state, the hex structure is shown to be the stable phase and the computed total energy versus composition indicates a hex to bco crystallographic phase transition with increasing Si content. The magneto-structural effects and the mechanisms responsible for the structural phase transition are discussed in details. The magnetic properties of Fe2P can be subtly tailored by Mn doping. It has been shown experimentally that Mn atoms preferentially occupy one of the two different Fe sites of Fe2P. Theoretical results for the Mn site occupancy in MnFeP1-xSix are presented. The single crystal and polycrystalline elastic constants and the Debye temperature of Pd1-xAgx binary alloys are calculated for the whole range of concentration, 0≤x≤1. It is shown that the variation of the elastic parameters of Pd-Ag alloys with chemical composition strongly deviates from the simple expected trend. The complex electronic origin of these anomalies is demonstrated. Within the present thesis, all relaxed crystal structures are obtained using the Projector AugmentedWave full-potential method. The chemical and magnetic disorder is treated using the Exact Muffin-Tin Orbitals method in combination with the Coherent Potential Approximation. The paramagnetic phase is modeled by the Disordered Local Magnetic Moments approach.QC 2010110

    Energy relavant materials: Investigations based on first principles

    No full text
    Energy production, storage and efficient usage are all crucial factors for environmentally sound and sustainable future technologies. One important question concerns the refrigeration industry, where the energy efficiency of the presently used technologies is at best 40% of the theoretical Carnot limit. Magnetic refrigerators offer a modern low-energy demand and environmentally friendly alternative. The diiron phosphide-based materials have been proposed to be amongst the most promising candidates for working body of magnetic refrigerators. Hydrogen is one of the most promising sources of renewable energy. Considerable international research focuses on finding good solid state materials for hydrogen storage. On the other hand, hydrogen gas is obtained from hydrogen containing chemical compounds, which after breaking the chemical bonds usually yield to a mixture of different gases. Palladiumsilver alloys are frequently used for hydrogen separation membranes for producing purified hydrogen gas. All these applications need a fundamental understanding of the structural, magnetic, chemical and thermophysical properties of the involved solid state materials. In this thesis ab initio electronic structure methods are used to study the magnetic and crystallographic properties of Fe2P based magneto-caloric compounds and the thermophysical properties of Pd-Ag binary alloys. The nature of magnetism and the strong sensitivity of the Curie temperature of the Fe2P1−xTx (T = boron, silicon and arsenic) are investigated. Using first principles theory, the change in the average magnetic exchange interactions upon doping is decomposed into chemical and structural contributions, the latter including the c/a and vol-ume effects. It is demonstrated that for the investigated alloys the structural effect can´be ascribed mainly to the c/a ratio that strengthens the magnetic exchange interactions between the two Fe sublattices. On the other hand, it is shown that the two types of Fe atoms have a very complicated co-dependency, which manifests in a metamagnetic behavior of the FeI sublattice. This behavior is strongly influenced by doping the P sites. Lattice stability of pure Fe2P and the effect of Si doping on the phase stability are pre-sented. In contrast to the observation, for the ferromagnetic state the hexagonal structure (hex, space group P62m) has no the lowest energy. For the paramagnetic state, the hex structure is shown to be the stable phase and the computed total energy versuscomposition indicates a hex to bco (body centered orthorhombic, space group Imm2)crystallographic phase transition with increasing Si content. The mechanisms responsi-ble for the structural phase transition are discussed in details. The magnetic properties of Fe2P can be subtly tailored by Mn doping. It was shown experimentally that Mn atoms preferentially occupy one of the two different Fe sites of Fe2P. Theoretical results for the Mn site occupancy in MnFeP1−xSix are presented. The single crystal elastic constants, the polycrystalline elastic moduli and the Debye temperature of disordered Pd1−xAgx binary alloys are calculated for the whole range of concentration, 0 ≤ x ≤ 1. It is shown that the variation of the elastic parameters of Pd-Ag alloys with chemical composition strongly deviates from the simple linear trend. The complex electronic origin of these anomalies is demonstrated. The effect of long range order on the single crystal elastic constants of Pd0.5Ag0.5 alloy is also investigated. Within this thesis most of the calculations were performed using the Exact Muffin-Tin Orbitals method. The chemical and magnetic disorder are treated via the Coherent Potential Approximation. The paramagnetic phase is modeled by the Disordered Local Magnetic Moments approach.QC 2012022

    Energy relavant materials: Investigations based on first principles

    No full text
    Energy production, storage and efficient usage are all crucial factors for environmentally sound and sustainable future technologies. One important question concerns the refrigeration industry, where the energy efficiency of the presently used technologies is at best 40% of the theoretical Carnot limit. Magnetic refrigerators offer a modern low-energy demand and environmentally friendly alternative. The diiron phosphide-based materials have been proposed to be amongst the most promising candidates for working body of magnetic refrigerators. Hydrogen is one of the most promising sources of renewable energy. Considerable international research focuses on finding good solid state materials for hydrogen storage. On the other hand, hydrogen gas is obtained from hydrogen containing chemical compounds, which after breaking the chemical bonds usually yield to a mixture of different gases. Palladiumsilver alloys are frequently used for hydrogen separation membranes for producing purified hydrogen gas. All these applications need a fundamental understanding of the structural, magnetic, chemical and thermophysical properties of the involved solid state materials. In this thesis ab initio electronic structure methods are used to study the magnetic and crystallographic properties of Fe2P based magneto-caloric compounds and the thermophysical properties of Pd-Ag binary alloys. The nature of magnetism and the strong sensitivity of the Curie temperature of the Fe2P1−xTx (T = boron, silicon and arsenic) are investigated. Using first principles theory, the change in the average magnetic exchange interactions upon doping is decomposed into chemical and structural contributions, the latter including the c/a and vol-ume effects. It is demonstrated that for the investigated alloys the structural effect can´be ascribed mainly to the c/a ratio that strengthens the magnetic exchange interactions between the two Fe sublattices. On the other hand, it is shown that the two types of Fe atoms have a very complicated co-dependency, which manifests in a metamagnetic behavior of the FeI sublattice. This behavior is strongly influenced by doping the P sites. Lattice stability of pure Fe2P and the effect of Si doping on the phase stability are pre-sented. In contrast to the observation, for the ferromagnetic state the hexagonal structure (hex, space group P62m) has no the lowest energy. For the paramagnetic state, the hex structure is shown to be the stable phase and the computed total energy versuscomposition indicates a hex to bco (body centered orthorhombic, space group Imm2)crystallographic phase transition with increasing Si content. The mechanisms responsi-ble for the structural phase transition are discussed in details. The magnetic properties of Fe2P can be subtly tailored by Mn doping. It was shown experimentally that Mn atoms preferentially occupy one of the two different Fe sites of Fe2P. Theoretical results for the Mn site occupancy in MnFeP1−xSix are presented. The single crystal elastic constants, the polycrystalline elastic moduli and the Debye temperature of disordered Pd1−xAgx binary alloys are calculated for the whole range of concentration, 0 ≤ x ≤ 1. It is shown that the variation of the elastic parameters of Pd-Ag alloys with chemical composition strongly deviates from the simple linear trend. The complex electronic origin of these anomalies is demonstrated. The effect of long range order on the single crystal elastic constants of Pd0.5Ag0.5 alloy is also investigated. Within this thesis most of the calculations were performed using the Exact Muffin-Tin Orbitals method. The chemical and magnetic disorder are treated via the Coherent Potential Approximation. The paramagnetic phase is modeled by the Disordered Local Magnetic Moments approach.QC 2012022

    Magnetic transitions in V-Fe-Co-Ni-Cu-based high entropy alloys

    Get PDF
    FeCoNi, V0.85FeCoNi, FeCoNiCu1.15 and V0.85FeCoNiCu1.15 alloys have been synthesized by arc melting and analyzed by powder X-ray diffraction, electron microscopy, magnetic measurements, and density functional theory (DFT). The influence of each alloying element on the magnetic exchange interaction, Curie temperature (TC) and magnetocaloric effect is evaluated. The experimental results show that Cu and V "dilute" the magnetic properties and couple antiferromagnetically to Fe, Co, and Ni. Analysis of the microstructure reveals a lack of solubility between V and Cu with FeCoNi, and between themselves, thus lowering the concentration of V and Cu in the main solid solution of the 5-element alloy V0.85FeCoNiCu1.15. Tc decreases significantly from 997 K in FeCoNi to 245 K in V0.85FeCoNi and 297 K in V0.85FeCoNiCu1.15, respectively. The derivative of magnetization as a function of temperature (dM/dT) in the vicinity of Tc is drastically reduced due to the presence of V which indicates a reduced magnetocaloric effect. DFT calculations confirm antiferromagnetic coupling of V to the ferromagnetic FeCoNi-base and predict a similar behavior for other transition metal elements (e.g., Ti, Cr, Mn). This leads to a lowering of Tc, which is needed to establish the magnetocaloric effect at room temperature. However, it comes at a cost of reduced magnetic moments. Nevertheless, the use of V and Cu has shown possible routes for tuning the magnetocaloric effect in FeCoNi-based high entropy alloys

    On the phase stability of CaCu5-type compounds

    No full text
    We present a hybrid method to inspect the phase stability of compounds having a CaCu5-type crystal structure. This is done using 2D stability plots using the Miedema parameters that are based on the work function and electron density of the constituent elements. Stable compounds are separated from unstable binary compounds, with a probability of 94%. For stable compounds, a linear relation is found, showing a constant ratio of charge transfer and electron density mismatch. DFT calculations show the same trend. Elements from the s, d, f-block are all reliably represented, elements from the p-block are still challenging.Title in WoS: On the phase stability of CaCu5-type compounds</p

    The effect of long-range order on the elastic properties of Cu3Au

    No full text
    Ab initio calculations, based on the exact muffin-tin orbitals method are used to determine the elastic properties of Cu-Au alloys with Au/Cu ratio 1/3. The compositional disorder is treated within the coherent potential approximation. The lattice parameters and single-crystal elastic constants are calculated for different partially ordered structures ranging from the fully ordered L1(2) to the random face centered cubic lattice. It is shown that the theoretical elastic constants follow a clear trend with the degree of chemical order: namely, C-11 and C-12 decrease, whereas C-44 remains nearly constant with increasing disorder. The present results are in line with the experimental findings that the impact of the chemical ordering on the fundamental elastic parameters is close to the resolution of the available experimental and theoretical tools

    Density Functional Theory description of the order-disorder transformation in Fe-Ni

    No full text
    The thermodynamic ordering transformation of tetragonal FeNi system is investigated by the Exact Muffin-Tin Orbitals (EMTO) method. The tetragonal distortion of the unit cell is taken into account and the free energy is calculated as a function of long-range order and includes the configurational, vibrational, electronic and magnetic contributions. We find that both configurational and vibrational effects are important and that the vibrational effect lowers the predicted transformation temperature by about 480 K compared to the value obtained merely from the configurational free energy. The predicted temperature is in excellent agreement with the experimental value when all contributions are taken into account. We also perform spin dynamics calculations for the magnetic transition temperature and find it to be in agreement with the experiments. The present research opens new opportunities for quantum-mechanical engineering of the chemical and magnetic ordering in tetrataenite

    Magnetism and magnetic structure determination of a selected (Mn,Co)(23)B-6-compound

    No full text
    The vast compositional space in cubic Cr23C6-type compounds (space group Fm3 over line m) opens up possibilities to tune properties by performing substitutions. In this study, the magnetic properties have been explored in a selected (Mn,Co)(23)B-6-compound by the means of synchrotron X-ray diffraction, neutron powder diffraction, magnetometry and electronic structure calculations. Refinements of a structural model based on combined X-ray and neutron diffraction data revealed mixed metal occupancies at all metal positions. However, two sites were richer in Co and the other two showed an abundance of Mn. The magnetic characteristics showed a ferrimagnetic structure below 550 K, with the magnetic moments aligned along the crystallographic c-direction and the magnetic moments on corner atoms having an opposite direction compared to the rest, within the magnetic space group I 4 mm m. The total magnetic moments extracted from magnetometry and neutron diffraction data gave similar values at 6 K, 20.1 and 18.2 mu(B)/f.u., respectively. Results from electronic structure calculations are in reasonable agreement with the experimental findings.&amp; nbsp;(C) 2022 The Author(s). Published by Elsevier B.V. CC_BY_4.

    Influence of antiphase boundary of the MnAl tau-phase on the energy product

    No full text
    In this paper, we use a multiscale approach to describe a realistic model of a permanent magnet based on MnAl tau-phase and elucidate how the antiphase boundary defects present in this material affect the energy product. We show how the extrinsic properties of a microstructure depend on the intrinsic properties of a structure with defects by performing micromagnetic simulations. For an accurate estimation of the energy product of a realistic permanent magnet based on the MnAl tau-phase with antiphase boundaries, we quantify exchange interaction strength across the antiphase boundary defect with a simple approach derived from first-principles calculations. These two types of calculations, performed at different scales, are linked via atomistic spin-dynamics simulations.Web of Science36art. no. 06441
    corecore