4 research outputs found
Packing 3-vertex paths in claw-free graphs and related topics
An L-factor of a graph G is a spanning subgraph of G whose every component is
a 3-vertex path. Let v(G) be the number of vertices of G and d(G) the
domination number of G. A claw is a graph with four vertices and three edges
incident to the same vertex. A graph is claw-free if it has no induced subgraph
isomorphic to a claw. Our results include the following. Let G be a 3-connected
claw-free graph, x a vertex in G, e = xy an edge in G, and P a 3-vertex path in
G. Then
(a1) if v(G) = 0 mod 3, then G has an L-factor containing (avoiding) e, (a2)
if v(G) = 1 mod 3, then G - x has an L-factor, (a3) if v(G) = 2 mod 3, then G -
{x,y} has an L-factor, (a4) if v(G) = 0 mod 3 and G is either cubic or
4-connected, then G - P has an L-factor, (a5) if G is cubic with v(G) > 5 and E
is a set of three edges in G, then G - E has an L-factor if and only if the
subgraph induced by E in G is not a claw and not a triangle, (a6) if v(G) = 1
mod 3, then G - {v,e} has an L-factor for every vertex v and every edge e in G,
(a7) if v(G) = 1 mod 3, then there exist a 4-vertex path N and a claw Y in G
such that G - N and G - Y have L-factors, and (a8) d(G) < v(G)/3 +1 and if in
addition G is not a cycle and v(G) = 1 mod 3, then d(G) < v(G)/3.
We explore the relations between packing problems of a graph and its line
graph to obtain some results on different types of packings. We also discuss
relations between L-packing and domination problems as well as between induced
L-packings and the Hadwiger conjecture.
Keywords: claw-free graph, cubic graph, vertex disjoint packing, edge
disjoint packing, 3-vertex factor, 3-vertex packing, path-factor, induced
packing, graph domination, graph minor, the Hadwiger conjecture.Comment: 29 page