6 research outputs found
StocHy: automated verification and synthesis of stochastic processes
StocHy is a software tool for the quantitative analysis of discrete-time
stochastic hybrid systems (SHS). StocHy accepts a high-level description of
stochastic models and constructs an equivalent SHS model. The tool allows to
(i) simulate the SHS evolution over a given time horizon; and to automatically
construct formal abstractions of the SHS. Abstractions are then employed for
(ii) formal verification or (iii) control (policy, strategy) synthesis. StocHy
allows for modular modelling, and has separate simulation, verification and
synthesis engines, which are implemented as independent libraries. This allows
for libraries to be easily used and for extensions to be easily built. The tool
is implemented in C++ and employs manipulations based on vector calculus, the
use of sparse matrices, the symbolic construction of probabilistic kernels, and
multi-threading. Experiments show StocHy's markedly improved performance when
compared to existing abstraction-based approaches: in particular, StocHy beats
state-of-the-art tools in terms of precision (abstraction error) and
computational effort, and finally attains scalability to large-sized models (12
continuous dimensions). StocHy is available at www.gitlab.com/natchi92/StocHy
Arch-comp19 category report: Stochastic modelling
This report presents the results of a friendly competition for formal verification and policy synthesis of stochastic models. It also introduces new benchmarks within this category, and recommends next steps for this category towards next year’s edition of the competition. The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in Spring 2019.Aerospace Transport & Operation
Arch-comp19 category report: Stochastic modelling
This report presents the results of a friendly competition for formal verification and policy synthesis of stochastic models. It also introduces new benchmarks within this category, and recommends next steps for this category towards next year’s edition of the competition. The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in Spring 2019
ARCH-COMP19 Category Report: Stochastic Modelling
This report presents the results of a friendly competition for formal verification and policy synthesis of stochastic models. It also introduces new benchmarks within this category, and recommends next steps for this category towards next year’s edition of the competition. The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in Spring 2019