19,477 research outputs found
Space, the new frontier
Space program - high thrust boosters with greater payload capabilities, superior guidance and control, and astronaut trainin
Prediction of VO\u3csub\u3e2\u3c/sub\u3e Peak Using Sub-Maximum Bench Step Test in Children
The purpose of this study was to develop a valid prediction of maximal oxygen uptake from data collected during a submaximum bench stepping test among children ages 8-12 years. Twentyseven active subjects (16 male and 11 female), weight 36.1 kg, height 144.4 cm and VO2 47.4 ± 7.9 ml/kg/min participated. Subjects completed a maximal oxygen consumption test with analysis of expired air and a submaximal bench stepping test. A formula to predict VO2max was developed from height, resting heart rate and heart rate response during the submaximum bench stepping test. This formula accounted for 71% of the variability in maximal oxygen consumption and is the first step in verifying the validity of the submaximum bench stepping test to predict VO2max. VO2max = -2.354 + (Height in cm * 0.065) + (Resting Heart Rate * 0.008) + (Step Test Average Heart Rate as a Percentage of Resting Heart Rate * -0.870
Temperature Dependence of Pair Correlations in Nuclei in the Iron-Region
We use the shell model Monte Carlo approach to study thermal properties and
pair correlations in Fe and in Cr. The calculations are
performed with the modified Kuo-Brown interaction in the complete model
space. We find generally that the proton-proton and neutron-neutron
pairing correlations, which dominate the ground state properties of even-even
nuclei, vanish at temperatures around 1 MeV. This pairing phase transition is
accompanied by a rapid increase in the moment of inertia and a partial
unquenching of the M1 strength. We find that the M1 strength totally unquenches
at higher temperatures, related to the vanishing of isoscalar proton-neutron
correlations, which persist to higher temperatures than the pairing between
like nucleons. The Gamow-Teller strength is also correlated to the isoscalar
proton-neutron pairing and hence also unquenches at a temperature larger than
that of the pairing phase transition.Comment: RevTeX and ps figure
Solution of large scale nuclear structure problems by wave function factorization
Low-lying shell model states may be approximated accurately by a sum over
products of proton and neutron states. The optimal factors are determined by a
variational principle and result from the solution of rather low-dimensional
eigenvalue problems. Application of this method to sd-shell nuclei, pf-shell
nuclei, and to no-core shell model problems shows that very accurate
approximations to the exact solutions may be obtained. Their energies, quantum
numbers and overlaps with exact eigenstates converge exponentially fast as the
number of retained factors is increased.Comment: 12 pages, 12 figures (from 15 eps files) include
Electrostatic interactions mediated by polarizable counterions: weak and strong coupling limits
We investigate the statistical mechanics of an inhomogeneous Coulomb fluid
composed of charged particles with static polarizability. We derive the weak-
and the strong-coupling approximations and evaluate the partition function in a
planar dielectric slab geometry with charged boundaries. We investigate the
density profiles and the disjoining pressure for both approximations.
Comparison to the case of non-polarizable counterions shows that polarizability
brings important differences in the counterion density distribution as well as
the counterion mediated electrostatic interactions between charged dielectric
interfaces.Comment: 25 pages, 7 figure
Benchmark calculations for elastic fermion-dimer scattering
We present continuum and lattice calculations for elastic scattering between
a fermion and a bound dimer in the shallow binding limit. For the continuum
calculation we use the Skorniakov-Ter-Martirosian (STM) integral equation to
determine the scattering length and effective range parameter to high
precision. For the lattice calculation we use the finite-volume method of
L\"uscher. We take into account topological finite-volume corrections to the
dimer binding energy which depend on the momentum of the dimer. After
subtracting these effects, we find from the lattice calculation kappa a_fd =
1.174(9) and kappa r_fd = -0.029(13). These results agree well with the
continuum values kappa a_fd = 1.17907(1) and kappa r_fd = -0.0383(3) obtained
from the STM equation. We discuss applications to cold atomic Fermi gases,
deuteron-neutron scattering in the spin-quartet channel, and lattice
calculations of scattering for nuclei and hadronic molecules at finite volume.Comment: 16 pages, 5 figure
Quasi-bipolar battery construction and method of fabricating
A lightweight, battery construction for lead acid batteries in which biplates are formed from a continuous strip of thermoplastic material, one face of the strip being provided with a plurality of electrically isolated lead strip arrays, each having a transverse axis about which the strip is folded or pleated to provide pleated biplate walls. The pleated continuous strip is sealed along edge longitudinal portions to provide chambers for receiving a plurality of non-conductive thermoplastic separator-plates and to contain electrolyte liquid. Separator-plates support resilient yieldable porous glass mats and scrim fabric in which active material is carried. The assembly of pleated biplates and separator-plates is maintained in pressure relation by exterior resilient means. A method of making such a continuous pleated biplate construction and of assembling one or more battery modules which may be connected in series or in parallel. A biplate construction having continuously wound lead stripes attached to a substrate
Bipolar battery construction
A lightweight, bipolar battery construction for lead acid batteries in which a plurality of thin, rigid, biplates each comprise a graphite fiber thermoplastic composition in conductive relation to lead stripes plated on opposite flat surfaces of the plates, and wherein a plurality of nonconductive thermoplastic separator plates support resilient yieldable porous glass mats in which active material is carried, the biplates and separator plates with active material being contained and maintained in stacked assembly by axial compression of the stacked assembly. A method of assembling such a bipolar battery construction
Silicon controlled rectifier polyphase bridge inverter commutated with gate-turn-off thyristor
A polyphase SCR inverter (10) having N switching poles, each comprised of two SCR switches (1A, 1B; 2A, 2B . . . NA, NB) and two diodes (D1B; D1B; D2A, D2B . . . DNA, DNB) in series opposition with saturable reactors (L1A, L1B; L2A, L2B . . . LNA, LNB) connecting the junctions between the SCR switches and diodes to an output terminal (1, 2 . . . 3) is commutated with only one GTO thyristor (16) connected between the common negative terminal of a dc source and a tap of a series inductor (14) connected to the positive terminal of the dc source. A clamp winding (22) and diode (24) are provided, as is a snubber (18) which may have its capacitance (c) sized for maximum load current divided into a plurality of capacitors (C.sub.1, C.sub.2 . . . C.sub.N), each in series with an SCR switch S.sub.1, S.sub.2 . . . S.sub.N). The total capacitance may be selected by activating selected switches as a function of load current. A resistor 28 and SCR switch 26 shunt reverse current when the load acts as a generator, such as a motor while braking
Composite battery separator
A composite battery separator comprises a support element (10) having an open pore structure such as a ribbed lattice and at least one liquid permeable sheet (20,22) to distribute the compressive force evenly onto the surfaces of the layers (24, 26) of negative active material and positive active material. In a non-flooded battery cell the compressible, porous material (18), such as a glass mat which absorbs the electrolyte, is compressed into a major portion of the pores or openings (16) in the support element. The unfilled pores in the material (18) form a gas diffusion path as the channels (41) formed between adjacent ribs in the lattice element (30,36). Facing two lattice elements (30, 31) with acute angled cross-ribs (34, 38) facing each other prevents the elements from interlocking and distorting a porous, separator (42) disposed between the lattice elements
- …