256 research outputs found
Kolmogorov widths under holomorphic mappings
If is a bounded linear operator mapping the Banach space into the
Banach space and is a compact set in , then the Kolmogorov widths of
the image do not exceed those of multiplied by the norm of . We
extend this result from linear maps to holomorphic mappings from to
in the following sense: when the widths of are for some
r\textgreater{}1, then those of are for any s \textless{}
r-1, We then use these results to prove various theorems about Kolmogorov
widths of manifolds consisting of solutions to certain parametrized PDEs.
Results of this type are important in the numerical analysis of reduced bases
and other reduced modeling methods, since the best possible performance of such
methods is governed by the rate of decay of the Kolmogorov widths of the
solution manifold
Approximation of high-dimensional parametric PDEs
Parametrized families of PDEs arise in various contexts such as inverse
problems, control and optimization, risk assessment, and uncertainty
quantification. In most of these applications, the number of parameters is
large or perhaps even infinite. Thus, the development of numerical methods for
these parametric problems is faced with the possible curse of dimensionality.
This article is directed at (i) identifying and understanding which properties
of parametric equations allow one to avoid this curse and (ii) developing and
analyzing effective numerical methodd which fully exploit these properties and,
in turn, are immune to the growth in dimensionality. The first part of this
article studies the smoothness and approximability of the solution map, that
is, the map where is the parameter value and is the
corresponding solution to the PDE. It is shown that for many relevant
parametric PDEs, the parametric smoothness of this map is typically holomorphic
and also highly anisotropic in that the relevant parameters are of widely
varying importance in describing the solution. These two properties are then
exploited to establish convergence rates of -term approximations to the
solution map for which each term is separable in the parametric and physical
variables. These results reveal that, at least on a theoretical level, the
solution map can be well approximated by discretizations of moderate
complexity, thereby showing how the curse of dimensionality is broken. This
theoretical analysis is carried out through concepts of approximation theory
such as best -term approximation, sparsity, and -widths. These notions
determine a priori the best possible performance of numerical methods and thus
serve as a benchmark for concrete algorithms. The second part of this article
turns to the development of numerical algorithms based on the theoretically
established sparse separable approximations. The numerical methods studied fall
into two general categories. The first uses polynomial expansions in terms of
the parameters to approximate the solution map. The second one searches for
suitable low dimensional spaces for simultaneously approximating all members of
the parametric family. The numerical implementation of these approaches is
carried out through adaptive and greedy algorithms. An a priori analysis of the
performance of these algorithms establishes how well they meet the theoretical
benchmarks
Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients
Elliptic partial differential equations (PDEs) with discontinuous diffusion
coefficients occur in application domains such as diffusions through porous
media, electro-magnetic field propagation on heterogeneous media, and diffusion
processes on rough surfaces. The standard approach to numerically treating such
problems using finite element methods is to assume that the discontinuities lie
on the boundaries of the cells in the initial triangulation. However, this does
not match applications where discontinuities occur on curves, surfaces, or
manifolds, and could even be unknown beforehand. One of the obstacles to
treating such discontinuity problems is that the usual perturbation theory for
elliptic PDEs assumes bounds for the distortion of the coefficients in the
norm and this in turn requires that the discontinuities are matched
exactly when the coefficients are approximated. We present a new approach based
on distortion of the coefficients in an norm with which
therefore does not require the exact matching of the discontinuities. We then
use this new distortion theory to formulate new adaptive finite element methods
(AFEMs) for such discontinuity problems. We show that such AFEMs are optimal in
the sense of distortion versus number of computations, and report insightful
numerical results supporting our analysis.Comment: 24 page
Tensor-Sparsity of Solutions to High-Dimensional Elliptic Partial Differential Equations
A recurring theme in attempts to break the curse of dimensionality in the
numerical approximations of solutions to high-dimensional partial differential
equations (PDEs) is to employ some form of sparse tensor approximation.
Unfortunately, there are only a few results that quantify the possible
advantages of such an approach. This paper introduces a class of
functions, which can be written as a sum of rank-one tensors using a total of
at most parameters and then uses this notion of sparsity to prove a
regularity theorem for certain high-dimensional elliptic PDEs. It is shown,
among other results, that whenever the right-hand side of the elliptic PDE
can be approximated with a certain rate in the norm of
by elements of , then the solution can be
approximated in from to accuracy
for any . Since these results require
knowledge of the eigenbasis of the elliptic operator considered, we propose a
second "basis-free" model of tensor sparsity and prove a regularity theorem for
this second sparsity model as well. We then proceed to address the important
question of the extent such regularity theorems translate into results on
computational complexity. It is shown how this second model can be used to
derive computational algorithms with performance that breaks the curse of
dimensionality on certain model high-dimensional elliptic PDEs with
tensor-sparse data.Comment: 41 pages, 1 figur
Approximation by Rational Functions
Making use of the Hardy-Littlewood maximal function, we give a new proof of the following theorem of Pekarski: If f\u27 is in L log L on a finite interval, then f can be approximated in the uniform norm by rational functions of degree n to an error 0(1/n) on that interval
Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients
Elliptic partial differential equations with diffusion coefficients of
lognormal form, that is , where is a Gaussian random field, are
considered. We study the summability properties of the Hermite
polynomial expansion of the solution in terms of the countably many scalar
parameters appearing in a given representation of . These summability
results have direct consequences on the approximation rates of best -term
truncated Hermite expansions. Our results significantly improve on the state of
the art estimates available for this problem. In particular, they take into
account the support properties of the basis functions involved in the
representation of , in addition to the size of these functions. One
interesting conclusion from our analysis is that in certain relevant cases, the
Karhunen-Lo\`eve representation of may not be the best choice concerning
the resulting sparsity and approximability of the Hermite expansion
- …