41 research outputs found

    Feed-Forward Propagation of Temporal and Rate Information between Cortical Populations during Coherent Activation in Engineered In Vitro Networks.

    Get PDF
    Transient propagation of information across neuronal assembles is thought to underlie many cognitive processes. However, the nature of the neural code that is embedded within these transmissions remains uncertain. Much of our understanding of how information is transmitted among these assemblies has been derived from computational models. While these models have been instrumental in understanding these processes they often make simplifying assumptions about the biophysical properties of neurons that may influence the nature and properties expressed. To address this issue we created an in vitro analog of a feed-forward network composed of two small populations (also referred to as assemblies or layers) of living dissociated rat cortical neurons. The populations were separated by, and communicated through, a microelectromechanical systems (MEMS) device containing a strip of microscale tunnels. Delayed culturing of one population in the first layer followed by the second a few days later induced the unidirectional growth of axons through the microtunnels resulting in a primarily feed-forward communication between these two small neural populations. In this study we systematically manipulated the number of tunnels that connected each layer and hence, the number of axons providing communication between those populations. We then assess the effect of reducing the number of tunnels has upon the properties of between-layer communication capacity and fidelity of neural transmission among spike trains transmitted across and within layers. We show evidence based on Victor-Purpura's and van Rossum's spike train similarity metrics supporting the presence of both rate and temporal information embedded within these transmissions whose fidelity increased during communication both between and within layers when the number of tunnels are increased. We also provide evidence reinforcing the role of synchronized activity upon transmission fidelity during the spontaneous synchronized network burst events that propagated between layers and highlight the potential applications of these MEMs devices as a tool for further investigation of structure and functional dynamics among neural populations

    Repeating Spatial-Temporal Motifs of CA3 Activity Dependent on Engineered Inputs from Dentate Gyrus Neurons in Live Hippocampal Networks.

    Get PDF
    Anatomical and behavioral studies, and in vivo and slice electrophysiology of the hippocampus suggest specific functions of the dentate gyrus (DG) and the CA3 subregions, but the underlying activity dynamics and repeatability of information processing remains poorly understood. To approach this problem, we engineered separate living networks of the DG and CA3 neurons that develop connections through 51 tunnels for axonal communication. Growing these networks on top of an electrode array enabled us to determine whether the subregion dynamics were separable and repeatable. We found spontaneous development of polarized propagation of 80% of the activity in the native direction from DG to CA3 and different spike and burst dynamics for these subregions. Spatial-temporal differences emerged when the relationships of target CA3 activity were categorized with to the number and timing of inputs from the apposing network. Compared to times of CA3 activity when there was no recorded tunnel input, DG input led to CA3 activity bursts that were 7× more frequent, increased in amplitude and extended in temporal envelope. Logistic regression indicated that a high number of tunnel inputs predict CA3 activity with 90% sensitivity and 70% specificity. Compared to no tunnel input, patterns of >80% tunnel inputs from DG specified different patterns of first-to-fire neurons in the CA3 target well. Clustering dendrograms revealed repeating motifs of three or more patterns at up to 17 sites in CA3 that were importantly associated with specific spatial-temporal patterns of tunnel activity. The number of these motifs recorded in 3 min was significantly higher than shuffled spike activity and not seen above chance in control networks in which CA3 was apposed to CA3 or DG to DG. Together, these results demonstrate spontaneous input-dependent repeatable coding of distributed activity in CA3 networks driven by engineered inputs from DG networks. These functional configurations at measured times of activation (motifs) emerge from anatomically accurate feed-forward connections from DG through tunnels to CA3

    MeaBench: A toolset for multi-electrode data acquisition and on-line analysis

    Get PDF
    We present a software suite, MeaBench, for data acquisition and online analysis of multi-electrode recordings, especially from micro-electrode arrays. Besides controlling data acquisition hardware, MeaBench includes algorithms for real-time stimulation artifact suppression and spike detection, as well as programs for online display of voltage traces from 60 electrodes and continuously updated spike raster plots. MeaBench features real-time output streaming, allowing easy integration with stimulator systems. We have been able to generate stimulation sequences in response to live neuronal activity with less than 20 ms lag time. MeaBench is open-source software, and is available for free public download at http://www.its.caltech.edu/~pinelab/wagenaar/meabench.html

    Long-Term Bidirectional Neuron Interfaces for Robotic Control, and In Vitro Learning Studies

    Get PDF
    There are two fundamentally different goals for neural interfacing. On the biology side, to interface living neurons to external electronics allows the observation and manipulation of neural circuits to elucidate their fundamental mechanisms. On the engineering side, neural interfaces in animals, people, or in cell culture have the potential to restore missing functionality, or someday, to enhance existing functionality. At the Laboratory for NeuroEngineering at Georgia Tech, we are developing new technologies to help make both goals attainable. We culture dissociated mammalian neurons on multi-electrode arrays, and use them as the brain of a 'Hybrot', or hybrid neural-robotic system. Distributed neural activity patterns are used to control mobile robots. We have created the hardware and software necessary to feed the robots' sensory inputs back to the cultures in real time, as electrical stimuli. By embodying cultured networks, we study learning and memory at the cellular and network level, using 2-photon laser-scanning microscopy to image plasticity while it happens. We have observed a very rich dynamical landscape of activity patterns in networks of only a few thousand cells. We can alter this landscape via electrical stimuli, and use the hybrot system to study the emergent properties of networks in vitro

    The Neurally Controlled Animat: Biological Brains Acting with Simulated Bodies

    Get PDF
    The brain is perhaps the most advanced and robust computation system known. We are creating a method to study how information is processed and encoded in living cultured neuronal networks by interfacing them to a computer-generated animal, the Neurally-Controlled Animat, within a virtual world. Cortical neurons from rats are dissociated and cultured on a surface containing a grid of electrodes (multi-electrode arrays, or MEAs) capable of both recording and stimulating neural activity. Distributed patterns of neural activity are used to control the behavior of the Animat in a simulated environment. The computer acts as its sensory system providing electrical feedback to the network about the Animat's movement within its environment. Changes in the Animat's behavior due to interaction with its surroundings are studied in concert with the biological processes (e.g., neural plasticity) that produced those changes, to understand how information is processed and encoded within a living neural network. Thus, we have created a hybrid real-time processing engine and control system that consists of living, electronic, and simulated components. Eventually this approach may be applied to controlling robotic devices, or lead to better real-time silicon-based information processing and control algorithms that are fault tolerant and can repair themselves

    Sparse and Specific Coding during Information Transmission between Co-cultured Dentate Gyrus and CA3 Hippocampal Networks

    Get PDF
    To better understand encoding and decoding of stimulus information in two specific hippocampal sub-regions, we isolated and co-cultured rat primary dentate gyrus (DG) and CA3 neurons within a two-chamber device with axonal connectivity via micro-tunnels. We tested the hypothesis that, in these engineered networks, decoding performance of stimulus site information would be more accurate when stimuli and information flow occur in anatomically correct feed-forward DG to CA3 vs. CA3 back to DG. In particular, we characterized the neural code of these sub-regions by measuring sparseness and uniqueness of the responses evoked by specific paired-pulse stimuli. We used the evoked responses in CA3 to decode the stimulation sites in DG (and vice-versa) by means of learning algorithms for classification (support vector machine, SVM). The device was placed over an 8 × 8 grid of extracellular electrodes (micro-electrode array, MEA) in order to provide a platform for monitoring development, self-organization, and improved access to stimulation and recording at multiple sites. The micro-tunnels were designed with dimensions 3 × 10 × 400 μm allowing axonal growth but not migration of cell bodies and long enough to exclude traversal by dendrites. Paired-pulse stimulation (inter-pulse interval 50 ms) was applied at 22 different sites and repeated 25 times in each chamber for each sub-region to evoke time-locked activity. DG-DG and CA3-CA3 networks were used as controls. Stimulation in DG drove signals through the axons in the tunnels to activate a relatively small set of specific electrodes in CA3 (sparse code). CA3-CA3 and DG-DG controls were less sparse in coding than CA3 in DG-CA3 networks. Using all target electrodes with the three highest spike rates (14%), the evoked responses in CA3 specified each stimulation site in DG with optimum uniqueness of 64%. Finally, by SVM learning, these evoked responses in CA3 correctly decoded the stimulation sites in DG for 43% of the trials, significantly higher than the reverse, i.e., how well-recording in DG could predict the stimulation site in CA3. In conclusion, our co-cultured model for the in vivo DG-CA3 hippocampal network showed sparse and specific responses in CA3, selectively evoked by each stimulation site in DG

    Causal Measures of Structure and Plasticity in Simulated and Living Neural Networks

    Get PDF
    A major goal of neuroscience is to understand the relationship between neural structures and their function. Recording of neural activity with arrays of electrodes is a primary tool employed toward this goal. However, the relationships among the neural activity recorded by these arrays are often highly complex making it problematic to accurately quantify a network's structural information and then relate that structure to its function. Current statistical methods including cross correlation and coherence have achieved only modest success in characterizing the structural connectivity. Over the last decade an alternative technique known as Granger causality is emerging within neuroscience. This technique, borrowed from the field of economics, provides a strong mathematical foundation based on linear auto-regression to detect and quantify “causal” relationships among different time series. This paper presents a combination of three Granger based analytical methods that can quickly provide a relatively complete representation of the causal structure within a neural network. These are a simple pairwise Granger causality metric, a conditional metric, and a little known computationally inexpensive subtractive conditional method. Each causal metric is first described and evaluated in a series of biologically plausible neural simulations. We then demonstrate how Granger causality can detect and quantify changes in the strength of those relationships during plasticity using 60 channel spike train data from an in vitro cortical network measured on a microelectrode array. We show that these metrics can not only detect the presence of causal relationships, they also provide crucial information about the strength and direction of that relationship, particularly when that relationship maybe changing during plasticity. Although we focus on the analysis of multichannel spike train data the metrics we describe are applicable to any stationary time series in which causal relationships among multiple measures is desired. These techniques can be especially useful when the interactions among those measures are highly complex, difficult to untangle, and maybe changing over time
    corecore