5,595 research outputs found

    A fast and robust hand-driven 3D mouse

    Get PDF
    The development of new interaction paradigms requires a natural interaction. This means that people should be able to interact with technology with the same models used to interact with everyday real life, that is through gestures, expressions, voice. Following this idea, in this paper we propose a non intrusive vision based tracking system able to capture hand motion and simple hand gestures. The proposed device allows to use the hand as a "natural" 3D mouse, where the forefinger tip or the palm centre are used to identify a 3D marker and the hand gesture can be used to simulate the mouse buttons. The approach is based on a monoscopic tracking algorithm which is computationally fast and robust against noise and cluttered backgrounds. Two image streams are processed in parallel exploiting multi-core architectures, and their results are combined to obtain a constrained stereoscopic problem. The system has been implemented and thoroughly tested in an experimental environment where the 3D hand mouse has been used to interact with objects in a virtual reality application. We also provide results about the performances of the tracker, which demonstrate precision and robustness of the proposed syste

    Dal frammento alla forma: il difficile viaggio verso l’identita

    Get PDF

    Planning Plastic Surgery in 3D. An innovative approach and tool

    Get PDF
    Face plastic surgery (PS) plays a major role in today medicine. Both for reconstructive and cosmetic surgery, achieving harmony of facial features is an important, if not the major goal. Several systems have been proposed for presenting to patient and surgeon possible outcomes of the surgical procedure. In this work, we present a new 3D system able to automatically suggest, for selected facial features as nose, chin, etc., shapes that aesthetically match the patient’s face. The basic idea is suggesting shape changes aimed to approach similar but more harmonious faces. To this goal, our system compares the 3D scan of the patient with a database of scans of harmonious faces, excluding the feature to be corrected. Then, the corresponding features of the k most similar harmonious faces, as well as their average, are suitably pasted onto the patient’s face, producing k+1 aesthetically effective surgery simulations. The system has been fully implemented and tested. To demonstrate the system, a 3D database of harmonious faces has been collected and a number of PS treatments have been simulated. The ratings of the outcomes of the simulations, provided by panels of human judges, show that the system and the underlying idea are effective

    A New 3D Tool for Planning Plastic Surgery

    Get PDF
    Face plastic surgery (PS) plays a major role in today medicine. Both for reconstructive and cosmetic surgery, achieving harmony of facial features is an important, if not the major goal. Several systems have been proposed for presenting to patient and surgeon possible outcomes of the surgical procedure. In this paper, we present a new 3D system able to automatically suggest, for selected facial features as nose, chin, etc, shapes that aesthetically match the patient's face. The basic idea is suggesting shape changes aimed to approach similar but more harmonious faces. To this goal, our system compares the 3D scan of the patient with a database of scans of harmonious faces, excluding the feature to be corrected. Then, the corresponding features of the k most similar harmonious faces, as well as their average, are suitably pasted onto the patient's face, producing k+1 aesthetically effective surgery simulations. The system has been fully implemented and tested. To demonstrate the system, a 3D database of harmonious faces has been collected and a number of PS treatments have been simulated. The ratings of the outcomes of the simulations, provided by panels of human judges, show that the system and the underlying idea are effectiv

    A Novel Method for the Quantification of White Wine Mannoproteins by a Competitive Indirect Enzyme-Linked Lectin Sorbent Assay (CI-ELLSA)

    Get PDF
    Mannoproteins (MPs) are cell wall proteoglycans released in wine by yeast during fermentation and ageing on lees, a procedure used for the production of several wines to enrich them in these components with consequences from both a technological and sensory point of view. Given the significance that wine MPs have for wine quality, winemakers would welcome a simple and accurate method for their quantification, as this would allow them to have a better control of this aspect at different winemaking stages. This study develops and validates a novel, simple and accurate method for MPs quantification in white wines based on a competitive indirect enzyme-linked lectin sorbent assay (CI-ELLSA), using the highly mannosylated yeast invertase as the standard. The method utilizes the lectin concanavalin A (ConA) as the immobilized ligand for MPs, and peroxidase, an enzyme rich in mannose, as the competitor for ConA. After addition of the peroxidase substrate, the intensity of the signal produced by the activity of this enzyme (absorbance at 450 nm) is inversely proportional to the amount of mannosylated proteins in the sample. Results have been validated on several wine styles including still, sparkling and sweet wines

    Modulating the Perceived Softness of Real Objects Through Wearable Feel-Through Haptics

    Get PDF
    In vision, Augmented Reality (AR) allows the superposition of digital content on real-world visual information, relying on the well-established See-through paradigm. In the haptic domain, a putative Feel-through wearable device should allow to modify the tactile sensation without masking the actual cutaneous perception of the physical objects. To the best of our knowledge, a similar technology is still far to be effectively implemented. In this work, we present an approach that allows, for the first time, to modulate the perceived softness of real objects using a Feel-through wearable that uses a thin fabric as interaction surface. During the interaction with real objects, the device can modulate the growth of the contact area over the fingerpad without affecting the force experienced by the user, thus modulating the perceived softness. To this aim, the lifting mechanism of our system warps the fabric around the fingerpad in a way proportional to the force exerted on the specimen under exploration. At the same time, the stretching state of the fabric is controlled to keep a loose contact with the fingerpad. We demonstrated that different softness perceptions for the same specimens can be elicited, by suitably controlling the lifting mechanism of the system

    Energy Management System for a Smart Green Nanogrid feeding a Research Laboratory with Autonomous Mobile Robots

    Get PDF
    This paper proposes a mixed-integer linear programming optimization model used to define an energy management system tailored for nanogrids in buildings, integrating renewable energy sources, battery energy storage systems and task-executing autonomous mobile robots. Focused on a nanogrid to be realised at the Savona Campus of the University of Genoa, the energy management system optimizes power flows and robot task scheduling in order to minimize the operating costs, the curtailment of the photovoltaic source and the number of unperformed tasks. Its novelty lies in combining energy and task planning constraints, offering significant potential for sustainable building energy management. Copyright (C) 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/

    Inside the Phenomenological Aspects of Wet Granulation: Role of Process Parameters

    Get PDF
    Granulation is a size-enlargement process by which small particles are bonded, by means of various techniques, in coherent and stable masses (granules), in which the original particles are still identifiable. In wet granulation processes, the powder particles are aggregated through the use of a liquid phase called binder. The main purposes of size-enlargement process of a powder or mixture of powders are to improve technological properties and/or to realize suitable forms of commercial products. A modern and rational approach in the production of granular structures with tailored features (in terms of size and size distribution, flowability, mechanical and release properties, etc.) requires a deep understanding of phenomena involved during granules formation. By this knowledge, suitable predictive tools can be developed with the aim to choose right process conditions to be used in developing new formulations by avoiding or reducing costs for new tests. In this chapter, after introductive notes on granulation process, the phenomenological aspects involved in the formation of the granules with respect to the main process parameters are presented by experimental demonstration. Possible mathematical approaches in the granulation process description are also presented and the one involving the population mass balances equations is detailed
    • 

    corecore