2,000 research outputs found

    Offering Web-based Tools via Library Websites for Academic and Research Progression: An Analytical Study

    Get PDF
    The purpose of the present study is to explore the possibility of integrating various online tools and apps with the library website and to identify the issues and benefits of implementing these tools. Quantitative online survey method was used using Google form in the present study to investigate the perception of the academic community involving students, teachers, and research scholars across higher education institutes in West Bengal, India about the online tools and apps and how they respond while interacting with these tools. Based on the responses to a series of questions, the study analyzed user observation and found purposive involvement of the academic community with various online tools and apps. The study identified the areas requiring improvements to maximize the usability of the tools and illustrated the usefulness of these tools in academic and research progression. The study also presented a schematic diagram of possible benefits and major constraints while implementing these tools. The research provides an overview of various online tools and apps facilitating academic and research progression and makes an attempt to convince librarians towards the informed selection of tools and highlights the utility of these tools among the academic community

    All-atom molecular dynamics simulations showing the dynamics of small organic molecules in water-solvated polyelectrolyte brush layers

    Get PDF
    Polyelectrolyte brushes can introduce functionality to surfaces and because of this, these brushes have been studied extensively. In many applications, these brushes are used in solutions that contain a variety of molecules. While the interaction between polyelectrolyte brushes and molecules has been studied via coarse-grained simulations and experiments, such interaction has not been studied in molecular detail. An understanding of interactions in such molecular detail may prove crucial in the design of future brush coatings that can enable desired adsorption of different organic and biological molecules. Therefore, we present a first all-atom molecular dynamics simulations study of poly(sodium acrylate) brushes in contact with a small organic molecule, γ-butyrolactone. Within this molecular framework, we study the interaction of this lactone molecule with the brush layer and study the ensuing absorption and dynamics of the lactone inside the brush layer. The lactone is found to prefer to remain in the bulk solution; however, when absorbed, lactone molecules are found to have significantly reduced mobilities as compared to that in the bulk solution and are able to massively influence the properties of the brush-entrapped water molecules. These findings provide unprecedented details about the absorption-driven changes to molecular structure and dynamics of the lactone molecules and the water molecules inside the brush layer and can only be uncovered by our all-atom MD simulations. Such explicit and atomistically-resolved information, taking into account the specific chemical nature of the interacting systems, is rare in the context of designing polymer and PE brush-based coatings. Thus, we anticipate that our findings will be crucial in the design of future brush coatings aimed at providing adsorption platforms for different organic and biomolecules.</p

    Experimental and theoretical study into interface structure and band alignment of the Cu2Zn1–xCdxSnS4 heterointerface for photovoltaic applications

    Get PDF
    To improve the constraints of kesterite Cu2ZnSnS4 (CZTS) solar cell, such as undesirable band alignment at p–n interfaces, bandgap tuning, and fast carrier recombination, cadmium (Cd) is introduced into CZTS nanocrystals forming Cu2Zn1–xCdxSnS4 through cost-effective solution-based method without postannealing or sulfurization treatments. A synergetic experimental–theoretical approach was employed to characterize and assess the optoelectronic properties of Cu2Zn1–xCdxSnS4 materials. Tunable direct band gap energy ranging from 1.51 to 1.03 eV with high absorption coefficient was demonstrated for the Cu2Zn1–xCdxSnS4 nanocrystals with changing Zn/Cd ratio. Such bandgap engineering in Cu2Zn1–xCdxSnS4 helps in effective carrier separation at interface. Ultrafast spectroscopy reveals a longer lifetime and efficient separation of photoexcited charge carriers in Cu2CdSnS4 (CCTS) nanocrystals compared to that of CZTS. We found that there exists a type-II staggered band alignment at the CZTS (CCTS)/CdS interface, from cyclic voltammetric (CV) measurements, corroborated by first-principles density functional theory (DFT) calculations, predicting smaller conduction band offset (CBO) at the CCTS/CdS interface as compared to the CZTS/CdS interface. These results point toward efficient separation of photoexcited carriers across the p–n junction in the ultrafast time scale and highlight a route to improve device performances

    Measurements of the pp → ZZ production cross section and the Z → 4ℓ branching fraction, and constraints on anomalous triple gauge couplings at √s = 13 TeV

    Get PDF
    Four-lepton production in proton-proton collisions, pp -> (Z/gamma*)(Z/gamma*) -> 4l, where l = e or mu, is studied at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb(-1). The ZZ production cross section, sigma(pp -> ZZ) = 17.2 +/- 0.5 (stat) +/- 0.7 (syst) +/- 0.4 (theo) +/- 0.4 (lumi) pb, measured using events with two opposite-sign, same-flavor lepton pairs produced in the mass region 60 4l) = 4.83(-0.22)(+0.23) (stat)(-0.29)(+0.32) (syst) +/- 0.08 (theo) +/- 0.12(lumi) x 10(-6) for events with a four-lepton invariant mass in the range 80 4GeV for all opposite-sign, same-flavor lepton pairs. The results agree with standard model predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ. couplings at 95% confidence level: -0.0012 < f(4)(Z) < 0.0010, -0.0010 < f(5)(Z) < 0.0013, -0.0012 < f(4)(gamma) < 0.0013, -0.0012 < f(5)(gamma) < 0.0013

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF

    Development and validation of HERWIG 7 tunes from CMS underlying-event measurements

    Get PDF
    This paper presents new sets of parameters (“tunes”) for the underlying-event model of the HERWIG7 event generator. These parameters control the description of multiple-parton interactions (MPI) and colour reconnection in HERWIG7, and are obtained from a fit to minimum-bias data collected by the CMS experiment at s=0.9, 7, and 13Te. The tunes are based on the NNPDF 3.1 next-to-next-to-leading-order parton distribution function (PDF) set for the parton shower, and either a leading-order or next-to-next-to-leading-order PDF set for the simulation of MPI and the beam remnants. Predictions utilizing the tunes are produced for event shape observables in electron-positron collisions, and for minimum-bias, inclusive jet, top quark pair, and Z and W boson events in proton-proton collisions, and are compared with data. Each of the new tunes describes the data at a reasonable level, and the tunes using a leading-order PDF for the simulation of MPI provide the best description of the dat

    Measurement of the Splitting Function in &ITpp &ITand Pb-Pb Collisions at root&ITsNN&IT=5.02 TeV

    Get PDF
    Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions.. The measurements are compared to various predictions from event generators and analytical calculations.Peer reviewe
    corecore