53 research outputs found
Allocations de ressources dans les réseaux sans fils énergétiquement efficaces.
In this thesis, we investigate two techniques used for enhancing the energy orspectral efficiency of the network. In the first part of the thesis, we propose tocombine the network future context prediction capabilities with the well-knownlatency vs. energy efficiency tradeoff. In that sense, we consider a proactivedelay-tolerant scheduling problem. In this problem, the objective consists ofdefining the optimal power strategies of a set of competing users, which minimizesthe individual power consumption, while ensuring a complete requestedtransmission before a given deadline. We first investigate the single user versionof the problem, which serves as a preliminary to the concepts of delay tolerance,proactive scheduling, power control and optimization, used through the first halfof this thesis. We then investigate the extension of the problem to a multiusercontext. The conducted analysis of the multiuser optimization problem leads toa non-cooperative dynamic game, which has an inherent mathematical complexity.In order to address this complexity issue, we propose to exploit the recenttheoretical results from the Mean Field Game theory, in order to transitionto a more tractable game with lower complexity. The numerical simulationsprovided demonstrate that the power strategies returned by the Mean FieldGame closely approach the optimal power strategies when it can be computed(e.g. in constant channels scenarios), and outperform the reference heuristicsin more complex scenarios where the optimal power strategies can not be easilycomputed.In the second half of the thesis, we investigate a dual problem to the previousoptimization problem, namely, we seek to optimize the total spectral efficiencyof the system, in a constant short-term power configuration. To do so, we proposeto exploit the recent advances in interference classification. the conductedanalysis reveals that the system benefits from adapting the interference processingtechniques and spectral efficiencies used by each pair of Access Point (AP) and User Equipment (UE). The performance gains offered by interferenceclassification can also be enhanced by considering two improvements. First, wepropose to define the optimal groups of interferers: the interferers in a samegroup transmit over the same spectral resources and thus interfere, but can processinterference according to interference classification. Second, we define theconcept of âVirtual Handoverâ: when interference classification is considered,the optimal Access Point for a user is not necessarily the one providing themaximal SNR. For this reason, defining the AP-UE assignments makes sensewhen interference classification is considered. The optimization process is thenthreefold: we must define the optimal i) interference processing technique andspectral efficiencies used by each AP-UE pair in the system; ii) the matching ofinterferers transmitting over the same spectral resources; and iii) define the optimalAP-UE assignments. Matching and interference classification algorithmsare extensively detailed in this thesis and numerical simulations are also provided,demonstrating the performance gain offered by the threefold optimizationprocedure compared to reference scenarios where interference is either avoidedwith orthogonalization or treated as noise exclusively.Dans le cadre de cette thĂšse, nous nous intĂ©ressons plus particuliĂšrement Ă deux techniques permettant dâamĂ©liorer lâefficacitĂ© Ă©nergĂ©tique ou spectrale desrĂ©seaux sans fil. Dans la premiĂšre partie de cette thĂšse, nous proposons de combinerles capacitĂ©s de prĂ©dictions du contexte futur de transmission au classiqueet connu tradeoff latence - efficacitĂ© Ă©nergĂ©tique, amenant Ă ce que lâon nommeraun rĂ©seau proactif tolĂ©rant Ă la latence. Lâobjectif dans ce genre de problĂšmesconsiste Ă dĂ©finir des politiques de transmissions optimales pour un ensembledâutilisateur, qui garantissent Ă chacun de pouvoir accomplir une transmissionavant un certain dĂ©lai, tout en minimisant la puissance totale consommĂ©e auniveau de chaque utilisateur. Nous considĂ©rons dans un premier temps le problĂšmemono-utilisateur, qui permet alors dâintroduire les concepts de tolĂ©rance Ă la latence, dâoptimisation et de contrĂÂŽle de puissance qui sont utilisĂ©s dans lapremiĂšre partie de cette thĂšse. Lâextension Ă un systĂšme multi-utilisateurs estensuite considĂ©rĂ©e. Lâanalyse rĂ©vĂšle alors que lâoptimisation multi-utilisateurpose problĂšme du fait de sa complexitĂ© mathĂ©matique. Mais cette complexitĂ©peut nĂ©anmoins ĂȘtre contournĂ©e grĂące aux rĂ©centes avancĂ©es dans le domainede la thĂ©orie des jeux Ă champs moyens, thĂ©orie qui permet de transiter dâunjeu multi-utilisateur, vers un jeu Ă champ moyen, Ă plus faible complexitĂ©. Lessimulations numĂ©riques dĂ©montrent que les stratĂ©gies de puissance retournĂ©espar lâapproche jeu Ă champ moyen approchent notablement les stratĂ©gies optimaleslorsquâelles peuvent ĂȘtre calculĂ©es, et dĂ©passent les performances desheuristiques communes, lorsque lâoptimum nâest plus calculable, comme câest lecas lorsque le canal varie au cours du temps.Dans la seconde partie de cettethĂšse, nous investiguons un possible problĂšme dual au problĂšme prĂ©cĂ©dent. PlusspĂ©cifiquement, nous considĂ©rons une approche dâoptimisation dâefficacitĂ© spectrale,Ă configuration de puissance constante. Pour ce faire, nous proposonsalors dâĂ©tudier lâimpact sur le rĂ©seau des rĂ©centes avancĂ©es en classification dâinterfĂ©rence.Lâanalyse conduite rĂ©vĂšle que le systĂšme peut bĂ©nĂ©ficier dâuneadaptation des traitements dâinterfĂ©rence faits Ă chaque rĂ©cepteur. Ces gainsobservĂ©s peuvent Ă©galement ĂȘtre amĂ©liorĂ©s par deux altĂ©rations de la dĂ©marchedâoptimisation. La premiĂšre propose de redĂ©finir les groupes dâinterfĂ©reurs decellules concurrentes, supposĂ©s transmettre sur les mĂȘmes ressources spectrales.Lâobjectif Ă©tant alors de former des paires dâinterfĂ©reurs âamisâ, capables detraiter efficacement leurs interfĂ©rences rĂ©ciproques. La seconde altĂ©ration portele nom de âVirtual Handoverâ : lorsque la classification dâinterfĂ©rence est considĂ©rĂ©e,lâaccess point offrant le meilleur SNR nâest plus nĂ©cessairement le meilleuraccess point auquel assigner un utilisateur. Pour cette raison, il est donc nĂ©cessairede laisser la possibilitĂ© au systĂšme de pouvoir choisir par lui-mĂȘme la façondont il procĂšde aux assignations des utilisateurs. Le processus dâoptimisationse dĂ©compose donc en trois parties : i) DĂ©finir les coalitions dâutilisateurs assignĂ©sĂ chaque access point ; ii) DĂ©finir les groupes dâinterfĂ©reurs transmettantsur chaque ressource spectrale ; et iii) DĂ©finir les stratĂ©gies de transmissionet les traitements dâinterfĂ©rences optimaux. Lâobjectif de lâoptimisationest alors de maximiser lâefficacitĂ© spectrale totale du systĂšme aprĂšs traitementde lâinterfĂ©rence. Les diffĂ©rents algorithmes utilisĂ©s pour rĂ©soudre, Ă©tape parĂ©tape, lâoptimisation globale du systĂšme sont dĂ©taillĂ©s. Enfin, des simulationsnumĂ©riques permettent de mettre en Ă©vidence les gains de performance potentielsofferts par notre dĂ©marche dâoptimisation
Concurrent data transmissions in green wireless networks: When best send one's packets?
978-1-4673-0761-1International audienceIn this paper, we consider the scenario of a cellular network where base stations aim to transmit several data packets to a set of users in the downlink, within a predefined time, at minimal energy cost. The base stations are non-cooperating and the instantaneous transmission rate depends on the instantaneous SINR at the receiver. The purpose of this article is to highlight a power-efficient transmit policy. By assuming a large number of homogeneous users, we model the problem as a mean field game, with tractable equations, that allow us to bypass the complexity of analyzing a Nash equilibrium in a L-body dynamic game. The framework we propose yields a consistent analysis of the optimal transmit power strategy, that allows every base station to, selfishly but rationally, satisfy its transmission, at a minimal energy cost
Steps Before Syntax: Helping Novice Programmers Solve Problems using the PCDIT Framework
Novice programmers often struggle with problem solving due to the high cognitive loads they face. Furthermore, many introductory programming courses do not explicitly teach it, assuming that problem solving skills are acquired along the way. In this paper, we present 'PCDIT', a non-linear problem solving framework that provides scaffolding to guide novice programmers through the process of transforming a problem specification into an implemented and tested solution for an imperative programming language. A key distinction of PCDIT is its focus on developing concrete cases for the problem early without actually writing test code: students are instead encouraged to think about the abstract steps from inputs to outputs before mapping anything down to syntax. We reflect on our experience of teaching an introductory programming course using PCDIT, and report the results of a survey that suggests it helped students to break down challenging problems, organise their thoughts, and reach working solutions
Globally invariant metabolism but density-diversity mismatch in springtails.
Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning
Global fine-resolution data on springtail abundance and community structure
Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.</p
ECMO for COVID-19 patients in Europe and Israel
Since March 15th, 2020, 177 centres from Europe and Israel have joined the study, routinely reporting on the ECMO support they provide to COVID-19 patients. The mean annual number of cases treated with ECMO in the participating centres before the pandemic (2019) was 55. The number of COVID-19 patients has increased rapidly each week reaching 1531 treated patients as of September 14th. The greatest number of cases has been reported from France (n = 385), UK (n = 193), Germany (n = 176), Spain (n = 166), and Italy (n = 136) .The mean age of treated patients was 52.6 years (range 16â80), 79% were male. The ECMO configuration used was VV in 91% of cases, VA in 5% and other in 4%. The mean PaO2 before ECMO implantation was 65 mmHg. The mean duration of ECMO support thus far has been 18 days and the mean ICU length of stay of these patients was 33 days. As of the 14th September, overall 841 patients have been weaned from ECMO
support, 601 died during ECMO support, 71 died after withdrawal of ECMO, 79 are still receiving ECMO support and for 10 patients status n.a. . Our preliminary data suggest that patients placed
on ECMO with severe refractory respiratory or cardiac failure secondary to COVID-19 have a reasonable (55%) chance of survival. Further extensive data analysis is expected to provide invaluable information on the demographics, severity of illness, indications and different ECMO management strategies in these patients
Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world
Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic.
Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality.
Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States.
Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis.
Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
Global fine-resolution data on springtail abundance and community structure
CODE AVAILABILITY : Programming R code is openly available together with the database from Figshare.SUPPLEMENTARY MATERIAL 1 : Template for data collectionSUPPLEMENTARY MATERIAL 2 : Data Descriptor WorksheetSpringtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.Open Access funding enabled and organized by Projekt DEAL.http://www.nature.com/sdatahj2024Plant Production and Soil ScienceSDG-15:Life on lan
Modelling human choices: MADeM and decisionâmaking
Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)