17,533 research outputs found

    On the collapse in fourth order gravities

    Full text link
    The gravitational collapse in fourth order theories of gravity defined by an arbitrary action of the scalar curvature shows significant deviations with General Relativity. The presence of a new scalar mode produces a higher initial contraction that favors the reduction of the collapsing time. However, depending on the particular model, there are fundamental differences when the modifications to the General Relativity collapse leave the linear regime. These analyses can be used to exclude an important region of the parameter space associated with alternative gravitational models.Comment: 4 pages, 2 figures, Contribution to the Proceedings of Spanish Relativity Meeting ERE2011, Madrid 201

    The dark side of penumbral microjets: Observations in H\alpha

    Full text link
    We present data of 10 penumbral microjets (PMJs) observed in H\alpha, Ca II 8542 \AA, and Fe I 6302 \AA line pair with the Swedish 1 m Solar Telescope (SST) with CRISP and Ca II K with SST/CHROMIS in active region NOAA 12599 on the 12th October 2016 at \mu=0.68. All four Stokes parameters of the Ca II 8542 \AA and Fe I 6302 \AA lines were observed and a series of test pixels was inverted using the Stockholm inversion code. Our analysis revealed for the first time that PMJs are visible in H\alpha, where they appear as dark features with average line-of-sight (LOS) upflows of 1.1\pm0.6 km/s, matching the LOS velocities from the inversions. Based on the H\alpha observations we extend the previous average length and lifetime of PMJs to 2815\pm530 km and 163\pm25 s, respectively. The plane-of-sky (POS) velocities of our PMJs of up to 17 km/s tend to give increased velocities with distance travelled. Furthermore, two of our PMJs with significant Stokes V signal indicate that the PMJs possess an increased LOS magnetic field of up to 100 G compared to the local pre-/post- PMJ magnetic field, which propagates as quickly as the PMJs' POS velocities. Finally, we present evidence that PMJs display an on average 1 minute gradual precursory brightening that only manifests itself in the cores of the Ca II lines. We conclude that PMJs are not ordinary jets but likely are manifestations of heat fronts that propagate at the local Alfven velocity

    Heating of the magnetic chromosphere: observational constraints from Ca II 8542 spectra

    Full text link
    The heating of the Sun's chromosphere remains poorly understood. While progress has been made on understanding what drives the quiet Sun internetwork chromosphere, chromospheric heating in strong magnetic field regions continues to present a difficult challenge, mostly because of a lack of observational constraints. We use high-resolution spectropolarimetric data from the Swedish 1-m Solar Telescope to identify the location and spatio-temporal properties of heating in the magnetic chromosphere. In particular, we report the existence of raised-core spectral line profiles in the Ca II 8542 line. These profiles are characterized by the absence of an absorption line core, showing a quasi-flat profile between +/- 0.5 {\AA}, and are abundant close to magnetic bright-points and plage. Comparison with 3D MHD simulations indicates that such profiles occur when the line-of-sight goes through an "elevated temperature canopy" associated with the expansion with height of the magnetic field of flux concentrations. This temperature canopy in the simulations is caused by ohmic dissipation where there are strong magnetic field gradients. The raised-core profiles are thus indicators of locations of increased chromospheric heating. We characterize the location and temporal and spatial properties of such profiles in our observations, thus providing much stricter constraints on theoretical models of chromospheric heating mechanisms than before.Comment: Accepted for publication in ApJ

    Opposite polarity field with convective downflow and its relation to magnetic spines in a sunspot penumbra

    Full text link
    We discuss NICOLE inversions of Fe I 630.15 nm and 630.25 nm Stokes spectra from a sunspot penumbra recorded with the CRISP imaging spectropolarimeter on the Swedish 1-m Solar Telescope at a spatial resolution close to 0.15". We report on narrow radially extended lanes of opposite polarity field, located at the boundaries between areas of relatively horizontal magnetic field (the intra-spines) and much more vertical field (the spines). These lanes harbor convective downflows of about 1 km/s. The locations of these downflows close to the spines agree with predictions from the convective gap model (the "gappy penumbra") proposed six years ago, and more recent 3D MHD simulations. We also confirm the existence of strong convective flows throughout the entire penumbra, showing the expected correlation between temperature and vertical velocity, and having vertical RMS velocities of about 1.2 km/s.Comment: Accepted for publication in A&A (06-March-2013). Minor corrections made in this version

    Comment on `Strong Vortex Liquid Correlation' from Multiterminal Measurements on Untwinned YBa2_2Cu3_3O7−δ_{7-\delta} Single Crystals'

    Full text link
    A.Rydh and \"O.Rapp [Phys. Rev. Lett. {\bf 86}, 1873 (2001).] claim that the vortex liquid in untwinned YBa2_2Cu3_3O7−δ_{7-\delta} crystals is correlated above the melting transition, in striking contrast to previous work [D.L\'opez {\it et al.}, Phys. Rev. Lett. {\bf 76}, 4034 (1996).]. In this Comment we present new measurements using the same experimental technique on twinned and untwinned YBa2_2Cu3_3O7−δ_{7-\delta} crystals with similar overall characteristics as those reported by Rydh and Rapp . The comparison of the vortex correlation response in both cases indicates that the central conclusion of their work is not correct. Our results reconfirm the work by L\'opez {\it et al.} and points on the origin of the misinterpretation in the work of Rydh and Rapp.Comment: comment on A.Rydh and \"O.Rapp, Phys. Rev. Lett. {\bf 86}, 1873 (2001). accepted in Phys. Rev. Let

    A Simple Kinetic Model Describes the Processivity of Myosin-V

    Get PDF
    Myosin-V is a motor protein responsible for organelle and vesicle transport in cells. Recent single-molecule experiments have shown that it is an efficient processive motor that walks along actin filaments taking steps of mean size close to 36 nm. A theoretical study of myosin-V motility is presented following an approach used successfully to analyze the dynamics of conventional kinesin but also taking some account of step-size variations. Much of the present experimental data for myosin-V can be well described by a two-state chemical kinetic model with three load-dependent rates. In addition, the analysis predicts the variation of the mean velocity and of the randomness -- a quantitative measure of the stochastic deviations from uniform, constant-speed motion -- with ATP concentration under both resisting and assisting loads, and indicates a {\it sub}step of size d0≃d_{0} \simeq 13-14 nm (from the ATP-binding site) that appears to accord with independent observations.Comment: 20 pages, 7 figures, to be published in Biophys. J. in 200

    Observationally based models of penumbral microjets

    Full text link
    We study the polarization signals and physical parameters of penumbral microjets (PMJs) by using high spatial resolution data taken in the Fe I 630 nm pair, Ca II 854.2 nm and Ca II K lines with the CRISP and CHROMIS instruments at the Swedish 1-m Solar Telescope. We infer their physical parameters, such as physical observables in the photosphere and chromospheric velocity diagnostics, by different methods, including inversions of the observed Stokes profiles with the STiC code. PMJs harbor overall brighter Ca II K line profiles and conspicuous polarization signals in Ca II 854.2 nm, specifically in circular polarization that often shows multiple lobes mainly due to the shape of Stokes I. They usually overlap photospheric regions with sheared magnetic field configuration, suggesting that magnetic reconnections could play an important role in the origin of PMJs. The discrepancy between their low LOS velocities and the high apparent speeds reported on earlier, as well as the existence of different vertical velocity gradients in the chromosphere, indicate that PMJs might not be entirely related to mass motions. Instead, PMJs could be due to perturbation fronts induced by magnetic reconnections occurring in the deep photosphere that propagate through the chromosphere. This reconnection may be associated with current heating that produces temperature enhancements from the temperature minimum region. Furthermore, enhanced collisions with electrons could also increase the coupling to the local conditions at higher layers during the PMJ phase, giving a possible explanation for the enhanced emission in the overall Ca II K profiles emerging from these transients.Comment: 15 pages, 18 figures. Accepted for publication in ApJ. Added references for Section 4.
    • …
    corecore