10,854 research outputs found
Statistical Modeling of Spatial Extremes
The areal modeling of the extremes of a natural process such as rainfall or
temperature is important in environmental statistics; for example,
understanding extreme areal rainfall is crucial in flood protection. This
article reviews recent progress in the statistical modeling of spatial
extremes, starting with sketches of the necessary elements of extreme value
statistics and geostatistics. The main types of statistical models thus far
proposed, based on latent variables, on copulas and on spatial max-stable
processes, are described and then are compared by application to a data set on
rainfall in Switzerland. Whereas latent variable modeling allows a better fit
to marginal distributions, it fits the joint distributions of extremes poorly,
so appropriately-chosen copula or max-stable models seem essential for
successful spatial modeling of extremes.Comment: Published in at http://dx.doi.org/10.1214/11-STS376 the Statistical
Science (http://www.imstat.org/sts/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Rejoinder to "Statistical Modeling of Spatial Extremes"
Rejoinder to "Statistical Modeling of Spatial Extremes" by A. C. Davison, S.
A. Padoan and M. Ribatet [arXiv:1208.3378].Comment: Published in at http://dx.doi.org/10.1214/12-STS376REJ the
Statistical Science (http://www.imstat.org/sts/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Post-Impact Thermal Evolution of Porous Planetesimals
Impacts between planetesimals have largely been ruled out as a heat source in
the early Solar System, by calculations that show them to be an inefficient
heat source and unlikely to cause global heating. However, the long-term,
localized thermal effects of impacts on planetesimals have never been fully
quantified. Here, we simulate a range of impact scenarios between planetesimals
to determine the post-impact thermal histories of the parent bodies, and hence
the importance of impact heating in the thermal evolution of planetesimals. We
find on a local scale that heating material to petrologic type 6 is achievable
for a range of impact velocities and initial porosities, and impact melting is
possible in porous material at a velocity of > 4 km/s. Burial of heated
impactor material beneath the impact crater is common, insulating that material
and allowing the parent body to retain the heat for extended periods (~
millions of years). Cooling rates at 773 K are typically 1 - 1000 K/Ma,
matching a wide range of measurements of metallographic cooling rates from
chondritic materials. While the heating presented here is localized to the
impact site, multiple impacts over the lifetime of a parent body are likely to
have occurred. Moreover, as most meteorite samples are on the centimeter to
meter scale, the localized effects of impact heating cannot be ignored.Comment: 38 pages, 9 figures, Revised for Geochimica et Cosmochimica Acta
(Sorry, they do not accept LaTeX
Following microscopic motion in a two dimensional glass-forming binary fluid
The dynamics of a binary mixture of large and small discs are studied at
temperatures approaching the glass transition using an analysis based on the
topology of the Voronoi polygon surrounding each atom. At higher temperatures
we find that dynamics is dominated by fluid-like motion that involves particles
entering and exiting the nearest-neighbour shells of nearby particles. As the
temperature is lowered, the rate of topological moves decreases and motion
becomes localised to regions of mixed pentagons and heptagons. In addition we
find that in the low temperature state particles may translate significant
distances without undergoing changes in their nearest neig hbour shell. These
results have implications for dynamical heterogeneities in glass forming
liquids.Comment: 12 pages, 7 figure
The pancreatic-polypeptide family of peptides: their role in the brain-gut axis
In this volume of Biomedical Reviews, Rogers and Hermann present an interesting model for the regulation of gastrointestinal function by two peptides, neuropeptide Y (NPY), and peptide YY (PYY), both of which belong to a related group of peptides known as the pancreatic polypeptide (PP)-fold family of peptides. In this review, largely of their own innovative work, they develop the hypothesis that PYY, acting as a humoral (hormonal) agent, may be a major inhibitory factor in the regulation of the upper gastrointestinal tract. In contrast, NPY would appear to be a major excitatory transmitter. How can two structurally homologous peptides produce such divergent actions?Biomedical Reviews 1997; 8: 70-72
Phase equilibrium modeling for high temperature metallization on GaAs solar cells
Recent trends in performance specifications and functional requirements have brought about the need for high temperature metallization technology to be developed for survivable DOD space systems and to enhance solar cell reliability. The temperature constitution phase diagrams of selected binary and ternary systems were reviewed to determine the temperature and type of phase transformation present in the alloy systems. Of paramount interest are the liquid-solid and solid-solid transformations. Data are being utilized to aid in the selection of electrical contact materials to gallium arsenide solar cells. Published data on the phase diagrams for binary systems is readily available. However, information for ternary systems is limited. A computer model is being developed which will enable the phase equilibrium predictions for ternary systems where experimental data is lacking
- …