3 research outputs found

    High-intensity interval training accelerates oxygen uptake kinetics and improves exercise tolerance for individuals with cystic fibrosis

    No full text
    Background: Exercise training provides benefits for individuals with cystic fibrosis; however, the optimal program is unclear. High-intensity interval training is safe and effective for improving 'functional capacity' in these individuals with peak rate of O2 uptake typically referenced. The ability to adjust submaximal rate of oxygen uptake (V̇O2 kinetics) might be more important for everyday function because maximal efforts are usually not undertaken. Moreover, the ability of high-intensity training to accelerate V̇O2 kinetics for individuals with cystic fibrosis could be enhanced with O2 supplementation during training. Methods: Nine individuals with cystic fibrosis completed incremental cycling to limit of tolerance followed by 8 weeks of high-intensity interval cycling (2 sessions per week x ~ 45 min per session) either with (n = 5; O2+) or without (AMB) oxygen supplementation (100%). Each session involved work intervals at 70% of peak work rate followed by 60 s of recovery at 35%. For progression, duration of work intervals was increased according to participant tolerance. Results: Both groups experienced a significant increase in work-interval duration over the course of the intervention (O2+, 1736 ± 141 v. 700 ± 154 s; AMB, 1463 ± 598 v. 953 ± 253 s; P = 0.000); however, the increase experienced by O2+ was greater (P = 0.027). During low-intensity constant-work-rate cycling, the V̇O2 mean response time was shortened post compared to pre training (O2+, 34 ± 11 v. 44 ± 9 s; AMB, 39 ± 14 v. 45 ± 17 s; P = 0.000) while during high-intensity constant-work-rate cycling, time to exhaustion was increased (O2+, 1628 ± 163 v. 705 ± 133 s; AMB, 1073 ± 633 v. 690 ± 348 s; P = 0.002) and blood [lactate] response was decreased (O2+, 4.5 ± 0.9 v. 6.3 ± 1.4 mmol. L- 1; AMB, 4.5 ± 0.6 v. 5.2 ± 1.4 mmol. L- 1; P = 0.003). These positive adaptations were similar regardless of gas inspiration during training. Conclusion: Eight weeks of high-intensity interval training for patients with cystic fibrosis accelerated V̇O2 kinetics and increased time to exhaustion. This provides some evidence that these patients may benefit from this type of exercise. Trial registration: This study was retrospectively registered in the ISRTCN registry on 22/06/2019 (#ISRCTN13864650).</p

    High-intensity interval training accelerates oxygen uptake kinetics and improves exercise tolerance for individuals with cystic fibrosis

    No full text
    Background: Exercise training provides benefits for individuals with cystic fibrosis; however, the optimal program is unclear. High-intensity interval training is safe and effective for improving 'functional capacity' in these individuals with peak rate of O2 uptake typically referenced. The ability to adjust submaximal rate of oxygen uptake (V̇O2 kinetics) might be more important for everyday function because maximal efforts are usually not undertaken. Moreover, the ability of high-intensity training to accelerate V̇O2 kinetics for individuals with cystic fibrosis could be enhanced with O2 supplementation during training. Methods: Nine individuals with cystic fibrosis completed incremental cycling to limit of tolerance followed by 8 weeks of high-intensity interval cycling (2 sessions per week x ~ 45 min per session) either with (n = 5; O2+) or without (AMB) oxygen supplementation (100%). Each session involved work intervals at 70% of peak work rate followed by 60 s of recovery at 35%. For progression, duration of work intervals was increased according to participant tolerance. Results: Both groups experienced a significant increase in work-interval duration over the course of the intervention (O2+, 1736 ± 141 v. 700 ± 154 s; AMB, 1463 ± 598 v. 953 ± 253 s; P = 0.000); however, the increase experienced by O2+ was greater (P = 0.027). During low-intensity constant-work-rate cycling, the V̇O2 mean response time was shortened post compared to pre training (O2+, 34 ± 11 v. 44 ± 9 s; AMB, 39 ± 14 v. 45 ± 17 s; P = 0.000) while during high-intensity constant-work-rate cycling, time to exhaustion was increased (O2+, 1628 ± 163 v. 705 ± 133 s; AMB, 1073 ± 633 v. 690 ± 348 s; P = 0.002) and blood [lactate] response was decreased (O2+, 4.5 ± 0.9 v. 6.3 ± 1.4 mmol. L- 1; AMB, 4.5 ± 0.6 v. 5.2 ± 1.4 mmol. L- 1; P = 0.003). These positive adaptations were similar regardless of gas inspiration during training. Conclusion: Eight weeks of high-intensity interval training for patients with cystic fibrosis accelerated V̇O2 kinetics and increased time to exhaustion. This provides some evidence that these patients may benefit from this type of exercise. Trial registration: This study was retrospectively registered in the ISRTCN registry on 22/06/2019 (#ISRCTN13864650).</p

    A qualitative exploration of cardiovascular disease patients’ views and experiences with an eHealth cardiac rehabilitation intervention: The PATHway project

    Get PDF
    The aim of this study is to explore participants’ views and experiences of an eHealth phase 3 cardiac rehabilitation (CR) intervention: Physical Activity Towards Health (PATHway). Sixty participants took part in the PATHway intervention. Debriefs were conducted after the six-month intervention. All interviews were audio recorded and transcribed verbatim. Transcripts were analysed with Braun and Clarke’s thematic analysis. Forty-four (71%) debriefs were conducted (n = 34 male, mean (SD) age 61 (10) years). Five key themes were identified: (1) Feedback on the components of the PATHway system, (2) Motivation, (3) Barriers to using PATHway, (4) Enablers to using PATHway, and (5) Post programme reflection. There were a number of subthemes within each theme, for example motivation explores participants motivation to take part in PATHway and participants motivation to sustain engagement with PATHway throughout the intervention period. Participant engagement with the components of the PATHway system was variable. Future research should focus on optimising participant familiarisation with eHealth systems and employ an iterative approach to development and evaluation
    corecore