1 research outputs found
Effect of 1‑Substitution on Tetrahydroisoquinolines as Selective Antagonists for the Orexin‑1 Receptor
Selective
blockade of the orexin-1 receptor (OX<sub>1</sub>) has
been suggested as a potential approach to drug addiction therapy because
of its role in modulating the brain’s reward system. We have
recently reported a series of tetrahydroisoquinoline-based OX<sub>1</sub> selective antagonists. Aimed at elucidating structure–activity
relationship requirements in other regions of the molecule and further
enhancing OX<sub>1</sub> potency and selectivity, we have designed
and synthesized a series of analogues bearing a variety of substituents
at the 1-position of the tetrahydroisoquinoline. The results show
that an optimally substituted benzyl group is required for activity
at the OX<sub>1</sub> receptor. Several compounds with improved potency
and/or selectivity have been identified. When combined with structural
modifications that were previously found to improve selectivity, we
have identified compound <b>73</b> (RTIOX-251) with an apparent
dissociation constant (<i>K</i><sub>e</sub>) of 16.1 nM
at the OX<sub>1</sub> receptor and >620-fold selectivity over the
OX<sub>2</sub> receptor. In vivo, compound <b>73</b> was shown
to block the development of locomotor sensitization to cocaine in
rats