1,112 research outputs found

    Mechanisms for optical binding

    Get PDF
    The phenomenon of optical binding is now experimentally very well established. With a recognition of the facility to collect and organize particles held in an optical trap, the related term 'optical matter' has also been gaining currency, highlighting possibilities for a significant interplay between optically induced inter-particle forces and other interactions such as chemical bonding and dispersion forces. Optical binding itself has a variety of interpretations. With some of these explanations being more prominent than others, and their applicability to some extent depending on the nature of the particles involved, a listing of these has to include the following: collective scattering, laser-dressed Casimir forces, virtual photon coupling, optically induced dipole resonance, and plasmon resonance coupling. It is the purpose of this paper to review and to establish the extent of fundamental linkages between these theoretical descriptions, recognizing the value that each has in relating the phenomenon of optical binding to the broader context of other, closely related physical measurements

    Optically induced potential energy landscapes

    Get PDF
    Multi-dimensional potential energy surfaces are associated with optical binding. A detailed exploration of the available degrees of geometric freedom reveals unexpected turning points, producing intricate patterns of local force and torque. Although optical pair interactions outweigh Casimir-Polder coupling even over short distances, the forces are not always attractive. Numerous local potential minimum and maximum can be located, and mapped on contour diagrams. Islands of stability appear, and structures conducive to the formation of rings. The results, based on quantum electrodynamics, apply to optically trapped molecules, nanoparticles, microparticles and colloids

    Upper bounds on the k-forcing number of a graph

    Full text link
    Given a simple undirected graph GG and a positive integer kk, the kk-forcing number of GG, denoted Fk(G)F_k(G), is the minimum number of vertices that need to be initially colored so that all vertices eventually become colored during the discrete dynamical process described by the following rule. Starting from an initial set of colored vertices and stopping when all vertices are colored: if a colored vertex has at most kk non-colored neighbors, then each of its non-colored neighbors becomes colored. When k=1k=1, this is equivalent to the zero forcing number, usually denoted with Z(G)Z(G), a recently introduced invariant that gives an upper bound on the maximum nullity of a graph. In this paper, we give several upper bounds on the kk-forcing number. Notable among these, we show that if GG is a graph with order n2n \ge 2 and maximum degree Δk\Delta \ge k, then Fk(G)(Δk+1)nΔk+1+min{δ,k}F_k(G) \le \frac{(\Delta-k+1)n}{\Delta - k + 1 +\min{\{\delta,k\}}}. This simplifies to, for the zero forcing number case of k=1k=1, Z(G)=F1(G)ΔnΔ+1Z(G)=F_1(G) \le \frac{\Delta n}{\Delta+1}. Moreover, when Δ2\Delta \ge 2 and the graph is kk-connected, we prove that Fk(G)(Δ2)n+2Δ+k2F_k(G) \leq \frac{(\Delta-2)n+2}{\Delta+k-2}, which is an improvement when k2k\leq 2, and specializes to, for the zero forcing number case, Z(G)=F1(G)(Δ2)n+2Δ1Z(G)= F_1(G) \le \frac{(\Delta -2)n+2}{\Delta -1}. These results resolve a problem posed by Meyer about regular bipartite circulant graphs. Finally, we present a relationship between the kk-forcing number and the connected kk-domination number. As a corollary, we find that the sum of the zero forcing number and connected domination number is at most the order for connected graphs.Comment: 15 pages, 0 figure

    BacS: An Abundant Bacteroid Protein in \u3cem\u3eRhizobium etli\u3c/em\u3e Whose Expression Ex Planta Requires \u3cem\u3enifA\u3c/em\u3e

    Get PDF
    Rhizobium etli CFN42 bacteroids from bean nodules possessed an abundant 16-kDa protein (BacS) that was found in the membrane pellet after cell disruption. This protein was not detected in bacteria cultured in tryptone-yeast extract. In minimal media, it was produced at low oxygen concentration but not in a mutant whose nifA was disrupted. N-terminal sequencing of the protein led to isolation of a bacS DNA fragment. DNA hybridization and nucleotide sequencing revealed three copies of the bacS gene, all residing on the main symbiotic plasmid of strain CFN42. A stretch of 304 nucleotides, exactly conserved upstream of all three bacS open reading frames, had very close matches with the NifA and sigma 54 consensus binding sequences. The only bacS homology in the genetic sequence databases was to three hypothetical proteins of unknown function, all from rhizobial species. Mutation and genetic complementation indicated that each of the bacS genes gives rise to a BacS polypeptide. Mutants disrupted or deleted in all three genes did not produce the BacS polypeptide but were Nod+ and Fix+ on Phaseolus vulgaris

    Scoping review on interventions to improve adherence to reporting guidelines in health research

    Get PDF
    Objectives The goal of this study is to identify, analyse and classify interventions to improve adherence to reporting guidelines in order to obtain a wide picture of how the problem of enhancing the completeness of reporting of biomedical literature has been tackled so far. Design Scoping review. Search strategy We searched the MEDLINE, EMBASE and Cochrane Library databases and conducted a grey literature search for (1) studies evaluating interventions to improve adherence to reporting guidelines in health research and (2) other types of references describing interventions that have been performed or suggested but never evaluated. The characteristics and effect of the evaluated interventions were analysed. Moreover, we explored the rationale of the interventions identified and determined the existing gaps in research on the evaluation of interventions to improve adherence to reporting guidelines. Results 109 references containing 31 interventions (11 evaluated) were included. These were grouped into five categories: (1) training on the use of reporting guidelines, (2) improving understanding, (3) encouraging adherence, (4) checking adherence and providing feedback, and (5) involvement of experts. Additionally, we identified lack of evaluated interventions (1) on training on the use of reporting guidelines and improving their understanding, (2) at early stages of research and (3) after the final acceptance of the manuscript. Conclusions This scoping review identified a wide range of strategies to improve adherence to reporting guidelines that can be taken by different stakeholders. Additional research is needed to assess the effectiveness of many of these interventionsPeer ReviewedPostprint (author's final draft

    Management of Mechanical Ventilation During Extracorporeal Membrane Oxygenation

    Get PDF
    This chapter explores the best practices of mechanical ventilation during extracorporeal membrane oxygenation (ECMO) through a detailed discussion of the physiologic theory and clinical evidence. Future areas of study and unanswered questions about mechanical ventilation during ECMO are also delineated

    Public interface effects: re-embodiment and transversality in public projection.

    Get PDF
    Public projections serve to both complicate and augment the relationship between various entities in public space by creating affordances for the enfolding of temporal, spatial, and material contexts via digital-networked media. Drawing on the work of Rafael Lozano-Hemmer and Camille Utterback, the authors argue that re-embodiment and transversality are key interface effects of successful public projection installations. These tactics serve an important function in engaging negotiated subjectivities and identities within the shifting parameters of media and the city. The discussion concludes with a brief description of "The Line," a research-creation project proposed by the authors which attempts to instantiate some of the strategies covered

    Proposal for a lunar tunnel-boring machine

    Get PDF
    A need exists for obtaining a safe and habitable lunar base that is free from the hazards of radiation, temperature gradient, and micrometeorites. A device for excavating lunar material and simultaneously generating living space in the subselenian environment was studied at the conceptual level. Preliminary examinations indicate that a device using a mechanical head to shear its way through the lunar material while creating a rigid ceramic-like lining meets design constraints using existing technology. The Lunar Tunneler is totally automated and guided by a laser communication system. There exists the potential for the excavated lunar material to be used in conjunction with a surface mining process for the purpose of the extraction of oxygen and other elements. Experiments into lunar material excavation and further research into the concept of a mechanical Lunar Tunneler are suggested
    corecore