4 research outputs found
Genome-wide association study reveals candidate markers related to field fertility and semen quality traits in Holstein-Friesian bulls
In vitro assessment of bull semen quality is routinely used in bull semen processing centres in order to ensure that semen destined to be used in the field has passed minimum standards. Despite these stringent quality control checks, individual bulls that pass the quality control checks can still vary in field fertility by up to 25%. A genome-wide association study was undertaken to determine genetic markers associated with prefreeze and post-thaw bull sperm quality traits as well as field fertility. Genome-wide association analysis was performed using a single nucleotide polymorphism (SNP) regression mixed linear model in WOMBAT. Genes within a 250 Kb span of a suggestive (P ≤ 1 × 10−5) SNP were considered as candidate genes. One SNP was associated with adjusted pregnancy rate, and 21 SNPs were associated across the seven semen quality traits (P ≤ 1 × 10−5). Functional candidate genes include SIPA1L2 which was associated with adjusted pregnancy rate. This encodes a Rap GTPase-activating protein involved in Rap1 signalling pathway and was previously found to play a role in the process of sperm differentiation. Gene ontology (GO) analysis also identified significantly enriched biological processes involved protein tyrosine kinase activity including genes such as DYRK1A, TEC and TXK that were associated with sperm motility prior to freezing. Another candidate gene associated with post-thaw sperm motility was FHDC1 which coordinates actin filament and microtubule dynamics. The induced 11 GO terms in the ejaculates rejected after freezing trait were related to ATPase, phosphatase and hydrolase activity. These results reveal novel specific genomic regions and candidate genes associated with economically important phenotypes such as field fertility and semen quality traits. </p
Sperm DNA methylation patterns at discrete CpGs and genes involved in embryonic development are related to bull fertility
Background: Despite a multifactorial approach being taken for the evaluation of bull semen quality in many animal breeding centres worldwide, reliable prediction of bull fertility is still a challenge. Recently, attention has turned to molecular mechanisms, which could uncover potential biomarkers of fertility. One of these mechanisms is DNA methylation, which together with other epigenetic mechanisms is essential for the fertilising sperm to drive normal embryo development and establish a viable pregnancy. In this study, we hypothesised that bull sperm DNA methylation patterns are related to bull fertility. We therefore investigated DNA methylation patterns from bulls used in artifcial insemination with contrasting fertility scores.
Results: The DNA methylation patterns were obtained by reduced representative bisulphite sequencing from 10 high-fertility bulls and 10 low-fertility bulls, having average fertility scores of −6.6 and + 6.5%, respectively (mean of the population was zero). Hierarchical clustering analysis did not distinguish bulls based on fertility but did highlight individual diferences. Despite this, using stringent criteria (DNA methylation diference≥35% and a q-value
Conclusion: This study demonstrated that at specifc CpG sites, sperm DNA methylation status is related to bull fertility, and identifed seven diferently methylated genes in sperm of subfertile bulls that may lead to altered gene expression and potentially infuence embryo development.</p
Identification of differentially expressed mRNAs and miRNAs in spermatozoa of bulls of varying fertility
Bulls used in artificial insemination, with apparently normal semen quality, can vary significantly in their field fertility. This study aimed to characterize the transcriptome of spermatozoa from high (HF) and low (LF) fertility bulls at the mRNA and miRNA level in order to identify potential novel markers of fertility. Holstein-Friesian bulls were assigned to either the HF or LF group (n = 10 per group) based on an adjusted national fertility index from a minimum of 500 inseminations. Total RNA was extracted from a pool of frozen-thawed spermatozoa from three different ejaculates per bull, following which mRNA-seq and miRNA-seq were performed. Six mRNAs and 13 miRNAs were found differentially expressed (P 1.5) between HF and LF bulls. Of particular interest, the gene pathways targeted by the 13 differentially expressed miRNAs were related to embryonic development and gene expression regulation. Previous studies reported that disruptions to protamine 1 mRNA (PRM1) had deleterious consequences for sperm chromatin structure and fertilizing ability. Notably, PRM1 exhibited a higher expression in spermatozoa from LF than HF bulls. In contrast, Western Blot analysis revealed a decrease in PRM1 protein abundance for spermatozoa from LF bulls; this was not associated with increased protamine deficiency (measured by the degree of chromatin compaction) or DNA fragmentation, as assessed by flow cytometry analyses. However, protamine deficiency was positively and moderately correlated with the percentage of spermatozoa with DNA fragmentation, irrespective of fertility group. This study has identified potential biomarkers that could be used for improving semen quality assessments of bull fertility.</p
Adenylate kinase 9 is essential for sperm function and male fertility in mammals
Despite passing routine laboratory tests for semen quality, bulls used in artificial insemination exhibit significant variation in fertility. Routine analysis of fertility data identified a dairy bull with extreme subfertility (10% pregnancy rate). To characterize the subfertility phenotype, a range of in vitro, in vivo, and molecular assays were carried out. Sperm from the subfertile bull exhibited reduced motility and severely reduced caffeine-induced hyperactivation compared to controls. Ability to penetrate the zona pellucida, cleavage rate, cleavage kinetics, and blastocyst yield after IVF or AI were significantly lower than in control bulls. Whole-genome sequencing from semen and RNA sequencing of testis tissue revealed a critical mutation in adenylate kinase 9 (AK9) that impaired splicing, leading to a premature termination codon and a severely truncated protein. Mice deficient in AK9 were generated to further investigate the function of the gene; knockout males were phenotypically indistinguishable from their wild-type littermates but produced immotile sperm that were incapable of normal fertilization. These sperm exhibited numerous abnormalities, including a low ATP concentration and reduced motility. RNA-seq analysis of their testis revealed differential gene expression of components of the axoneme and sperm flagellum as well as steroid metabolic processes. Sperm ultrastructural analysis showed a high percentage of sperm with abnormal flagella. Combined bovine and murine data indicate the essential metabolic role of AK9 in sperm motility and/or hyperactivation, which in turn affects sperm binding and penetration of the zona pellucida. Thus, AK9 has been found to be directly implicated in impaired male fertility in mammals.</p
