250 research outputs found
On -stellated and -stacked spheres
We introduce the class of -stellated (combinatorial) spheres
of dimension () and compare and contrast it with the
class () of -stacked homology -spheres.
We have , and for . However, for each there are
-stacked spheres which are not -stellated. The existence of -stellated
spheres which are not -stacked remains an open question.
We also consider the class (and ) of
simplicial complexes all whose vertex-links belong to
(respectively, ). Thus, for , while . Let
denote the class of -dimensional complexes all whose
vertex-links are -stacked balls. We show that for , there is a
natural bijection from onto which is the inverse to the boundary map .Comment: Revised Version. Theorem 2.24 is new. 18 pages. arXiv admin note:
substantial text overlap with arXiv:1102.085
Non-existence of 6-dimensional pseudomanifolds with complementarity
In a previous paper the second author showed that if is a pseudomanifold
with complementarity other than the 6-vertex real projective plane and the
9-vertex complex projective plane, then must have dimension , and -
in case of equality - must have exactly 12 vertices. In this paper we prove
that such a 6-dimensional pseudomanifold does not exist. On the way to proving
our main result we also prove that all combinatorial triangulations of the
4-sphere with at most 10 vertices are combinatorial 4-spheres.Comment: 11 pages. To appear in Advances in Geometr
Minimal triangulations of sphere bundles over the circle
For integers and or 1, let
denote the sphere product if and the
twisted bundle over if . The main results of
this paper are: (a) if (mod 2) then has a unique minimal triangulation using vertices, and
(b) if (mod 2) then has
minimal triangulations (not unique) using vertices. The second result
confirms a recent conjecture of Lutz. The first result provides the first known
infinite family of closed manifolds (other than spheres) for which the minimal
triangulation is unique. Actually, we show that while
has at most one -vertex triangulation (one if
(mod 2), zero otherwise), in sharp contrast, the number of non-isomorphic -vertex triangulations of these -manifolds grows exponentially with
for either choice of . The result in (a), as well as the minimality
part in (b), is a consequence of the following result: (c) for ,
there is a unique -vertex simplicial complex which triangulates a
non-simply connected closed manifold of dimension . This amazing simplicial
complex was first constructed by K\"{u}hnel in 1986. Generalizing a 1987 result
of Brehm and K\"{u}hnel, we prove that (d) any triangulation of a non-simply
connected closed -manifold requires at least vertices. The result
(c) completely describes the case of equality in (d). The proofs rest on the
Lower Bound Theorem for normal pseudomanifolds and on a combinatorial version
of Alexander duality.Comment: 15 pages, Revised, To appear in `Journal of Combinatorial Theory,
Ser. A
On polytopal upper bound spheres
Generalizing a result (the case ) due to M. A. Perles, we show that
any polytopal upper bound sphere of odd dimension belongs to the
generalized Walkup class , i.e., all its vertex links are
-stacked spheres. This is surprising since the -stacked spheres minimize
the face-vector (among all polytopal spheres with given )
while the upper bound spheres maximize the face vector (among spheres with a
given ).
It has been conjectured that for , all -neighborly
members of the class are tight. The result of this paper shows
that, for every , the case is a true exception to this
conjecture.Comment: 4 page
- …