6,324 research outputs found
Thermal issues at the SSC
A variety of heat transfer problems arise in the design of the Superconducting Super Collider (SSC). One class of problems is to minimize heat leak from the ambient to the SSC rings, since the rings contain superconducting magnets maintained at a temperature of 4 K. Another arises from the need to dump the beam of protrons (traveling around the SSC rings) on to absorbers during an abort of the collider. Yet another category of problems is the cooling of equipment to dissipate the heat generated during operation. An overview of these problems and sample heat transfer results are given in this paper
Thermodynamically stable noncomposite vortices in mesoscopic two-gap superconductors
In mesoscopic two-gap superconductors with sizes of the order of the
coherence length noncomposite vortices are found to be thermodynamically stable
in a large domain of the phase diagram. In these phases the vortex
cores of one condensate are spatially separated from the other condensate ones,
and their respective distributions can adopt distinct symmetries. The
appearance of these vortex phases is caused by a non-negligible effect of the
boundary of the sample on the superconducting order parameter and represents
therefore a genuine mesoscopic effect. For low values of interband Josephson
coupling vortex patterns with can arise in addition to the
phases with , where and are total vorticities in the two
condensates. The calculations show that noncomposite vortices could be observed
in thin mesoscopic samples of MgB.Comment: 5 pages, 3 figures, to be published in Europhysics Letter
Scanning SQUID microscopy of vortex clusters in multiband superconductors
In type-1.5 superconductors, vortices emerge in clusters, which grow in size
with increasing magnetic field. These novel vortex clusters and their field
dependence are directly visualized by scanning SQUID microscopy at very low
vortex densities in MgB2 single crystals. Our observations are elucidated by
simulations based on a two-gap Ginzburg-Landau theory in the type-1.5 regime.Comment: 4 pages, 5 figures, to be published in Physical Review
Alpha-nucleus potential for alpha-decay and sub-barrier fusion
The set of parameters for alpha-nucleus potential is derived by using the
data for both the alpha-decay half-lives and the fusion cross-sections around
the barrier for reactions alpha+40Ca, alpha+59Co, alpha+208Pb. The alpha-decay
half-lives are obtained in the framework of a cluster model using the WKB
approximation. The evaluated alpha-decay half-lives and the fusion
cross-sections agreed well with the data. Fusion reactions between
alpha-particle and heavy nuclei can be used for both the formation of very
heavy nuclei and spectroscopic studies of the formed compound nuclei.Comment: 10 pages, 5 figure
Type-1.5 Superconductors
We demonstrate the existence of a novel superconducting state in high quality
two-component MgB2 single crystalline superconductors where a unique
combination of both type-1 (kappa_1 0.707)
superconductor conditions is realized for the two components of the order
parameter. This condition leads to a vortex-vortex interaction attractive at
long distances and repulsive at short distances, which stabilizes
unconventional stripe- and gossamer-like vortex patterns that we have
visualized in this type-1.5 superconductor using Bitter decoration and also
reproduced in numerical simulations.Comment: accepted in Phys. Rev. Let
Giant vortices, vortex rings and reentrant behavior in type-1.5 superconductors
We predict that in a bulk type-1.5 superconductor the competing magnetic
responses of the two components of the order parameter can result in a vortex
interaction that generates group-stabilized giant vortices and unusual vortex
rings in the absence of any extrinsic pinning or confinement mechanism. We also
find within the Ginzburg-Landau theory a rich phase diagram with successions of
behaviors like type-1 -> type-1.5 -> type-2 -> type-1.5 as temperature
decreases.Comment: 5 pages, 4 figure
- …