4 research outputs found
Defect tolerance in as-deposited selenium-alloyed cadmium telluride solar cells
The efficiency of cadmium telluride (CdTe) solar cells is limited primarily by voltage, which is known to depend on the carrier concentration and carrier lifetimes within the absorber layer of the cell. Here, cathodoluminescence measurements are made on an as-deposited CdSeTe/CdTe solar cell that show that selenium alloyed CdTe material luminesces much more strongly than non-alloyed CdTe. This reduction in non-radiative recombination in the CdSeTe suggests that the selenium gives it a certain defect tolerance. This has implications for carrier lifetimes and voltages in cadmium telluride solar cells
Low cycle fatigue of a directionally solidified nickel-based superalloy: testing, characterisation and modelling
Low cycle fatigue (LCF) of a low-carbon (LC) directionally-solidified (DS) nickel-base superalloy, CM247 LC DS, was investigated using both experimental and computational methods. Strain-controlled LCF tests were conducted at 850°C, with a loading direction either parallel or perpendicular to the solidification direction. Trapezoidal loading-waveforms with 2 s and 200 s dwell times imposed at the minimum and the maximum strains were adopted for the testing. A constant strain range of 2% was maintained throughout the fully-reversed loading conditions (strain ratio R = −1). The observed fatigue life was shorter when the loading direction was perpendicular to the solidification one, indicating an anisotropic material response. It was found that the stress amplitude remained almost constant until final fracture, suggesting limited cyclic hardening/softening. Also, stress relaxation was clearly observed during the dwell period. Scanning Electron Microscopy fractographic analyses showed evidence of similar failure modes in all the specimens. To understand deformation at grain level, crystal plasticity finite element modelling was carried out based on grain textures measured with EBSD. The model simulated the full history of cyclic stress-strain responses. It was particularly revealed that the misorientations between columnar grains resulted in heterogeneous deformation and localised stress concentrations, which became more severe when the loading direction was normal to a solidification direction, explaining the shorter fatigue life observed
