742 research outputs found

    Fermionic and Majorana Bound States in Hybrid Nanowires with Non-Uniform Spin-Orbit Interaction

    Full text link
    We study intragap bound states in the topological phase of a Rashba nanowire in the presence of a magnetic field and with non-uniform spin orbit interaction (SOI) and proximity-induced superconductivity gap. We show that fermionic bound states (FBS) can emerge inside the proximity gap. They are localized at the junction between two wire sections characterized by different directions of the SOI vectors, and they coexist with Majorana bound states (MBS) localized at the nanowire ends. The energy of the FBS is determined by the angle between the SOI vectors and the lengthscale over which the SOI changes compared to the Fermi wavelength and the localization length. We also consider double-junctions and show that the two emerging FBSs can hybridize and form a double quantum dot-like structure inside the gap. We find explicit analytical solutions of the bound states and their energies for certain parameter regimes such as weak and strong SOI. The analytical results are confirmed and complemented by an independent numerical tight-binding model approach. Such FBS can act as quasiparticle traps and thus can have implications for topological quantum computing schemes based on braiding MBSs

    Creation of nonlocal spin-entangled electrons via Andreev tunneling, Coulomb blockade and resonant transport

    Full text link
    We discuss several scenarios for the creation of nonlocal spin-entangled electrons which provide a source of electronic Einstein-Podolsky-Rosen (EPR) pairs. The central idea is to exploit the spin correlations naturally present in superconductors in form of Cooper pairs. We show that nonlocal spin-entanglement in form of an effective Heisenberg spin interaction is induced between electron spins residing on two quantum dots with no direct coupling between them but each of them being tunnel-coupled to the same superconductor. We then discuss a nonequilibrium setup where mobile and nonlocal spin-entanglement can be created by coherent injection of two electrons in an Andreev tunneling process into two spatially separated quantum dots and subsequently into two Fermi-liquid leads. The current for injecting two spin-entangled electrons into different leads shows a resonance whereas tunneling via the same dot into the same lead is suppressed by the Coulomb blockade effect of the quantum dots. The Aharonov-Bohm oscillations in the current are shown to contain h/e and h/2e periods. Finally we discuss a structure consisting of a superconductor weakly coupled to two separate Luttinger liquid leads. We show that strong correlations again suppress the coherent subsequent tunneling of two electrons into the same lead, thus generating again nonlocal spin-entangled electrons.Comment: 15 pages, 6 figures; proceedings Spintronics conference 2001, Georgetown-University, Washington D

    Giant spin orbit interaction due to rotating magnetic fields in graphene nanoribbons

    Full text link
    We theoretically study graphene nanoribbons in the presence of spatially varying magnetic fields produced e.g. by nanomagnets. We show both analytically and numerically that an exceptionally large Rashba spin orbit interaction (SOI) of the order of 10 meV can be produced by the non-uniform magnetic field. As a consequence, helical modes exist in armchair nanoribbons that exhibit nearly perfect spin polarization and are robust against boundary defects. This paves the way to realizing spin filter devices in graphene nanoribbons in the temperature regime of a few Kelvins. If a nanoribbon in the helical regime is in proximity contact to an s-wave superconductor, the nanoribbon can be tuned into a topological phase sustaining Majorana fermions

    Fractional Fermions with Non-Abelian Statistics

    Full text link
    We introduce a novel class of low-dimensional topological tight-binding models that allow for bound states that are fractionally charged fermions and exhibit non-Abelian braiding statistics. The proposed model consists of a double (single) ladder of spinless (spinful) fermions in the presence of magnetic fields. We study the system analytically in the continuum limit as well as numerically in the tight-binding representation. We find a topological phase transition with a topological gap that closes and reopens as a function of system parameters and chemical potential. The topological phase is of the type BDI and carries two degenerate mid-gap bound states that are localized at opposite ends of the ladders. We show numerically that these bound states are robust against a wide class of perturbations

    Integer and Fractional Quantum Hall Effect in a Strip of Stripes

    Full text link
    We study anisotropic stripe models of interacting electrons in the presence of magnetic fields in the quantum Hall regime with integer and fractional filling factors. The model consists of an infinite strip of finite width that contains periodically arranged stripes (forming supercells) to which the electrons are confined and between which they can hop with associated magnetic phases. The interacting electron system within the one-dimensional stripes are described by Luttinger liquids and shown to give rise to charge and spin density waves that lead to periodic structures within the stripe with a reciprocal wavevector 8k_F. This wavevector gives rise to Umklapp scattering and resonant scattering that results in gaps and chiral edge states at all known integer and fractional filling factors \nu. The integer and odd denominator filling factors arise for a uniform distribution of stripes, whereas the even denominator filling factors arise for a non-uniform stripe distribution. We calculate the Hall conductance via the Streda formula and show that it is given by \sigma_H=\nu e^2/h for all filling factors. We show that the composite fermion picture follows directly from the condition of the resonant Umklapp scattering

    Spin orbit-induced anisotropic conductivity of a disordered 2DEG

    Full text link
    We present a semi-automated computer-assisted method to generate and calculate diagrams in the disorder averaging approach to disordered 2D conductors with intrinsic spin-orbit interaction (SOI). As an application, we calculate the effect of the SOI on the charge conductivity for disordered 2D systems and rings in the presence of Rashba and Dresselhaus SOI. In an infinite-size 2D system, anisotropic corrections to the conductivity tensor arise due to phase-coherence and the interplay of Rashba and Dresselhaus SOI. The effect is more pronounced in the quasi-onedimensional case, where the conductivity becomes anisotropic already in the presence of only one type of SOI. The anisotropy further increases if the time-reversal symmetry of the Hamiltonian is broken.Comment: 20 pages, 8 figure

    Cluster States From Heisenberg Interaction

    Full text link
    We show that a special type of entangled states, cluster states, can be created with Heisenberg interactions and local rotations in 2d steps where d is the dimension of the lattice. We find that, by tuning the coupling strengths, anisotropic exchange interactions can also be employed to create cluster states. Finally, we propose electron spins in quantum dots as a possible realization of a one-way quantum computer based on cluster states

    Topological Edge States and Fractional Quantum Hall Effect from Umklapp Scattering

    Full text link
    We study anisotropic lattice strips in the presence of a magnetic field in the quantum Hall effect regime. At specific magnetic fields, causing resonant Umklapp scattering, the system is gapped in the bulk and supports chiral edge states in close analogy to topological insulators. These gaps result in plateaus for the Hall conductivity exactly at the known fillings n/m (both positive integers and m odd) for the integer and fractional quantum Hall effect. For double strips we find topological phase transitions with phases that support midgap edge states with flat dispersion. The topological effects predicted here could be tested directly in optical lattices
    • …
    corecore