81 research outputs found
Algorithmic fault tolerance using the Lanczos method
We consider the problem of algorithm-based fault tolerance, and make two major contributions. First, we show how very general sequences of polynomials can be used to generate the checksums, so as to reduce the chance of numerical overows. Second, we show how the Lanczos process can be applied in the error location and correction steps, so as to save on the amount of work and to facilitate actual hardware implementation
Integrated Assessment of Circulating Cell-Free MicroRNA Signatures in Plasma of Patients with Melanoma Brain Metastasis.
Primary cutaneous melanoma frequently metastasizes to distant organs including the brain. Identification of cell-free microRNAs (cfmiRs) found in the blood can be used as potential body fluid biomarkers for detecting and monitoring patients with melanoma brain metastasis (MBM). In this pilot study, we initially aimed to identify cfmiRs in the blood of MBM patients. Normal donors plasma (healthy, n = 48) and pre-operative MBM patients\u27 plasma samples (n = 36) were compared for differences in \u3e2000 microRNAs (miRs) using a next generation sequencing (NGS) probe-based assay. A 74 cfmiR signature was identified in an initial cohort of MBM plasma samples and then verified in a second cohort of MBM plasma samples (n = 24). Of these, only 58 cfmiRs were also detected in MBM tissues (n = 24). CfmiR signatures were also found in patients who have lung and breast cancer brain metastasis (n = 13) and glioblastomas (n = 36) compared to MBM plasma samples. The 74 cfmiR signature and the latter cfmiR signatures were then compared. We found a 6 cfmiR signature that was commonly upregulated in MBM plasma samples in all of the comparisons, and a 29 cfmiR signature that distinguishes MBM patients from normal donors\u27 samples. In addition, we assessed for cfmiRs in plasma (n = 20) and urine (n = 14) samples collected from metastatic melanoma patients receiving checkpoint inhibitor immunotherapy (CII). Pre- and post-treatment samples showed consistent changes in cfmiRs. Analysis of pre- and post-treatment plasma samples showed 8 differentially expressed (DE) cfmiRs that overlapped with the 35 cfmiR signature found in MBM patients. In paired pre-treatment plasma and urine samples receiving CII 8 cfmiRs overlapped. This study identified specific cfmiRs in MBM plasma samples that may potentially allow for assessment of melanoma patients developing MBM. The cfmiR signatures identified in both blood and urine may have potential utility to assess CII responses after further validation
Planet Populations as a Function of Stellar Properties
Exoplanets around different types of stars provide a window into the diverse
environments in which planets form. This chapter describes the observed
relations between exoplanet populations and stellar properties and how they
connect to planet formation in protoplanetary disks. Giant planets occur more
frequently around more metal-rich and more massive stars. These findings
support the core accretion theory of planet formation, in which the cores of
giant planets form more rapidly in more metal-rich and more massive
protoplanetary disks. Smaller planets, those with sizes roughly between Earth
and Neptune, exhibit different scaling relations with stellar properties. These
planets are found around stars with a wide range of metallicities and occur
more frequently around lower mass stars. This indicates that planet formation
takes place in a wide range of environments, yet it is not clear why planets
form more efficiently around low mass stars. Going forward, exoplanet surveys
targeting M dwarfs will characterize the exoplanet population around the lowest
mass stars. In combination with ongoing stellar characterization, this will
help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet
Probing Episodic Accretion in Very Low Luminosity Objects
Episodic accretion has been proposed as a solution to the long-standing luminosity problem in star formation; however, the process remains poorly understood. We present observations of line emission from N2H+ and CO isotopologues using the Atacama Large Millimeter/submillimeter Array (ALMA) in the envelopes of eight very low luminosity objects (VeLLOs). In five of the sources the spatial distribution of emission from N2H+ and CO isotopologues shows a clear anticorrelation. It is proposed that this is tracing the CO snow line in the envelopes: N2H+ emission is depleted toward the center of these sources, in contrast to the CO isotopologue emission, which exhibits a peak. The positions of the CO snow lines traced by the N2H+ emission are located at much larger radii than those calculated using the current luminosities of the central sources. This implies that these five sources have experienced a recent accretion burst because the CO snow line would have been pushed outward during the burst because of the increased luminosity of the central star. The N2H+ and CO isotopologue emission from DCE161, one of the other three sources, is most likely tracing a transition disk at a later evolutionary stage. Excluding DCE161, five out of seven sources (i.e., ~70%) show signatures of a recent accretion burst. This fraction is larger than that of the Class 0/I sources studied by JĂžrgensen et al. and Frimann et al., suggesting that the interval between accretion episodes in VeLLOs is shorter than that in Class 0/I sources
Genome-wide meta-analysis for Alzheimer's disease cerebrospinal fluid biomarkers
Altres ajuts: European Alzheimer DNA BioBank, EADB; EU Joint Programme, Neurodegenerative Disease Research (JPND); Neurodegeneration research program of Amsterdam Neuroscience; Stichting Alzheimer Nederland; Stichting VUmc fonds; Stichting Dioraphte; JPco-fuND FP-829-029 (ZonMW projectnumber 733051061); Dutch Federation of University Medical Centers; Dutch Government (from 2007-2011); JPND EADB grant (German Federal Ministry of Education and Research (BMBF) grant: 01ED1619A); German Research Foundation (DFG RA 1971/6-1, RA1971/7-1, RA 1971/8-1); Grifols SA; FundaciĂłn bancaria 'La Caixa'; FundaciĂł ACE; CIBERNED; Fondo Europeo de Desarrollo Regional (FEDER-'Una manera de hacer Europa'); NIH (P30AG066444, P01AG003991); Alzheimer Research Foundation (SAO-FRA), The Research Foundation Flanders (FWO), and the University of Antwerp Research Fund. FK is supported by a BOF DOCPRO fellowship of the University of Antwerp Research Fund; Siemens Healthineers; Valdecilla Biobank (PT17/0015/0019); Academy of Finland (338182); German Center for Neurodegenerative Diseases (DZNE); German Federal Ministry of Education and Research (BMBF 01G10102, 01GI0420, 01GI0422, 01GI0423, 01GI0429, 01GI0431, 01GI0433, 04GI0434, 01GI0711); ZonMW (#73305095007); Health~Holland, Topsector Life Sciences & Health (PPP-allowance #LSHM20106); Hersenstichting; Edwin Bouw Fonds; Gieskes-Strijbisfonds; NWO Gravitation program BRAINSCAPES: A Roadmap from Neurogenetics to Neurobiology (NWO: 024.004.012); Swedish Alzheimer Foundation (AF-939988, AF-930582, AF-646061, AF-741361); Dementia Foundation (2020-04-13, 2021-04-17); Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (ALF 716681); Swedish Research Council (11267, 825-2012-5041, 2013-8717, 2015-02830, 2017-00639, 2019-01096); Swedish Research Council for Health, Working Life and Welfare (2001-2646, 2001-2835, 2001-2849, 2003-0234, 2004-0150, 2005-0762, 2006-0020, 2008-1229, 2008-1210, 2012-1138, 2004-0145, 2006-0596, 2008-1111, 2010-0870, 2013-1202, 2013-2300, 2013-2496); Swedish Brain Power, HjĂ€rnfonden, Sweden (FO2016-0214, FO2018-0214, FO2019-0163); Alzheimer's Association Zenith Award (ZEN-01-3151); Alzheimer's Association Stephanie B. Overstreet Scholars (IIRG-00-2159); Alzheimer's Association (IIRG-03-6168, IIRG-09-131338); Bank of Sweden Tercentenary Foundation; Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (ALFGBG-81392, ALFGBG-771071); Swedish Alzheimer Foundation (AF-842471, AF-737641, AF-939825); Swedish Research Council (2019-02075); Swedish Research Council (2016-01590); BRAINSCAPES: A Roadmap from Neurogenetics to Neurobiology (024.004.012); Swedish Research Council (2018-02532); Swedish State Support for Clinical Research (ALFGBG-720931); Alzheimer Drug Discovery Foundation (ADDF), USA (201809-2016862); UK Dementia Research Institute at UCL; Swedish Research Council (#2017-00915); Alzheimer Drug Discovery Foundation (ADDF), USA (#RDAPB-201809-2016615); Swedish Alzheimer Foundation (#AF-742881); HjĂ€rnfonden, Sweden (#FO2017-0243); Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986); National Institute of Health (NIH), USA, (#1R01AG068398-01); Alzheimer's Association 2021 Zenith Award (ZEN-21-848495); National Institutes of Health (R01AG044546, R01AG064877, RF1AG053303, R01AG058501, U01AG058922, RF1AG058501, R01AG064614); Chuck Zuckerberg Initiative (CZI).Amyloid-beta 42 (AÎČ42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n = 8074; replication n = 5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for AÎČ42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple AÎČ42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume
A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease
A genome-wide survival analysis of 14,406 Alzheimer's disease (AD) cases and 25,849 controls identified eight previously reported AD risk loci and 14 novel loci associated with age at onset. Linkage disequilibrium score regression of 220 cell types implicated the regulation of myeloid gene expression in AD risk. The minor allele of rs1057233 (G), within the previously reported CELF1 AD risk locus, showed association with delayed AD onset and lower expression of SPI1 in monocytes and macrophages. SPI1 encodes PU.1, a transcription factor critical for myeloid cell development and function. AD heritability was enriched within the PU.1 cistrome, implicating a myeloid PU.1 target gene network in AD. Finally, experimentally altered PU.1 levels affected the expression of mouse orthologs of many AD risk genes and the phagocytic activity of mouse microglial cells. Our results suggest that lower SPI1 expression reduces AD risk by regulating myeloid gene expression and cell function
A novel Alzheimer disease locus located near the gene encoding tau protein
APOE Δ4, the most significant genetic risk factor for Alzheimer disease (AD), may mask effects of other loci. We re-analyzed genome-wide association study (GWAS) data from the International Genomics of Alzheimerâs Project (IGAP) Consortium in APOE Δ4+ (10,352 cases and 9,207 controls) and APOE Δ4- (7,184 cases and 26,968 controls) subgroups as well as in the total sample testing for interaction between a SNP and APOE Δ4 status. Suggestive associations (P<1x10-4) in stage 1 were evaluated in an independent sample (stage 2) containing 4,203 subjects (APOE Δ4+: 1,250 cases and 536 controls; APOE Δ4-: 718 cases and 1,699 controls). Among APOE Δ4- subjects, novel genome-wide significant (GWS) association was observed with 17 SNPs (all between KANSL1 and LRRC37A on chromosome 17 near MAPT) in a meta-analysis of the stage 1 and stage 2 datasets (best SNP, rs2732703, P=5·8x10-9). Conditional analysis revealed that rs2732703 accounted for association signals in the entire 100 kilobase region that includes MAPT. Except for previously identified AD loci showing stronger association in APOE Δ4+ subjects (CR1 and CLU) or APOE Δ4- subjects (MS4A6A/MS4A4A/ MS4A6E), no other SNPs were significantly associated with AD in a specific APOE genotype subgroup. In addition, the finding in the stage 1 sample that AD risk is significansignificantly influenced by the interaction of APOE with rs1595014 in TMEM106B (P=1·6x10-7) is noteworthy because TMEM106B variants have previously been associated with risk of frontotemporal dementia. Expression quantitative trait locus analysis revealed that rs113986870, one of the GWS SNPs near rs2732703, is significantly associated with four KANSL1 probes that target transcription of the first translated exon and an untranslated exon in hippocampus (P<1.3x10-8), frontal cortex (P<1.3x10-9), and temporal cortex (P<1.2x10-11). Rs113986870 is also strongly associated with a MAPT probe that targets transcription of alternatively spliced exon 3 in frontal cortex (P=9.2x10-6) and temporal cortex (P=2.6x10-6). Our APOE-stratified GWAS is the first to show GWS association for AD with SNPs in the chromosome 17q21.31 region. Replication of this finding in independent samples is needed to verify that SNPs in this region have significantly stronger effects on AD risk in persons lacking APOE Δ4 compared to persons carrying this allele, and if this is found to hold, further examination of this region and studies aimed at deciphering the mechanism(s) are warranted
Populations of planets in multiple star systems
Astronomers have discovered that both planets and binaries are abundant
throughout the Galaxy. In combination, we know of over 100 planets in binary
and higher-order multi-star systems, in both circumbinary and circumstellar
configurations. In this chapter we review these findings and some of their
implications for the formation of both stars and planets. Most of the planets
found have been circumstellar, where there is seemingly a ruinous influence of
the second star if sufficiently close (<50 AU). Hosts of hot Jupiters have been
a particularly popular target for binary star studies, showing an enhanced rate
of stellar multiplicity for moderately wide binaries (>100 AU). This was
thought to be a sign of Kozai-Lidov migration, however recent studies have
shown this mechanism to be too inefficient to account for the majority of hot
Jupiters. A couple of dozen circumbinary planets have been proposed around both
main sequence and evolved binaries. Around main sequence binaries there are
preliminary indications that the frequency of gas giants is as high as those
around single stars. There is however a conspicuous absence of circumbinary
planets around the tightest main sequence binaries with periods of just a few
days, suggesting a unique, more disruptive formation history of such close
stellar pairs.Comment: Invited review chapter, accepted for publication in "Handbook of
Exoplanets", ed. H. Deeg & J. A. Belmont
Common variants in Alzheimerâs disease and risk stratification by polygenic risk scores
Funder: Funder: FundaciĂłn bancaria âLa Caixaâ Number: LCF/PR/PR16/51110003 Funder: Grifols SA Number: LCF/PR/PR16/51110003 Funder: European Union/EFPIA Innovative Medicines Initiative Joint Number: 115975 Funder: JPco-fuND FP-829-029 Number: 733051061Genetic discoveries of Alzheimer's disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery nâ=â409,435 and validation size nâ=â58,190). Here, we add six variants associated with Alzheimer's disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer's disease patients in APOE É4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer's disease
- âŠ