533 research outputs found

    Correlated spinless fermions on the honeycomb lattice revisited

    Full text link
    We investigate the quantum many-body instabilities of the extended Hubbard model for spinless fermions on the honeycomb lattice with repulsive nearest-neighbor and 2nd nearest-neighbor density-density interactions. Recent exact diagonalization and infinite density matrix renormalization group results suggest that a putative topological Mott insulator phase driven by the 2nd nearest-neighbor repulsion is suppressed, while other numerically exact approaches support the topological Mott insulator scenario. In the present work, we employ the functional renormalization group (fRG) for correlated fermionic systems. Our fRG results hint at a strong suppression of the scattering processes stabilizing the topological Mott insulator. From analyzing the effects of fermionic fluctuations, we obtain a phase diagram which is the result of the competition of various charge ordering instabilities.Comment: 9 pages, 8 figure

    Bond-ordered states and ff-wave pairing of spinless fermions on the honeycomb lattice

    Full text link
    Spinless fermions on the honeycomb lattice with repulsive nearest-neighbor interactions are known to harbour a quantum critical point at half-filling, with critical behaviour in the Gross-Neveu (chiral Ising) universality class. The critical interaction strength separates a weak-coupling semimetallic regime from a commensurate charge-density-wave phase. The phase diagram of this basic model of correlated fermions on the honeycomb lattice beyond half-filling is, however, less well established. Here, we perform an analysis of its many-body instabilities using the functional renormalization group method with a basic Fermi surface patching scheme, which allows us to treat instabilities in competing channels on equal footing also away from half-filling. Between half-filling and the van-Hove filling, the free Fermi surface is hole-like and we again find a charge-density wave instability to be dominant at large interactions. Moreover, its characteristics are those of the half-filled case. Directly at the van-Hove filling the nesting property of the free Fermi surface stabilizes a dimerized bond-order phase. At lower filling the free Fermi surface becomes electron-like and a superconducting instability with ff-wave symmetry is found to emerge from the interplay of intra-unitcell repulsion and collective fluctuations in the proximity to the charge-density wave instability. We estimate the extent of the various phases and extract the corresponding order parameters from the effective low-energy Hamiltonians.Comment: 11 pages, 11 figure

    Spin-Orbit Coupling and Magnetic Anisotropy in Iron-Based Superconductors

    Full text link
    We determine theoretically the effect of spin-orbit coupling on the magnetic excitation spectrum of itinerant multi-orbital systems, with specific application to iron-based superconductors. Our microscopic model includes a realistic ten-band kinetic Hamiltonian, atomic spin-orbit coupling, and multi-orbital Hubbard interactions. Our results highlight the remarkable variability of the resulting magnetic anisotropy despite constant spin-orbit coupling. At the same time, the magnetic anisotropy exhibits robust universal behavior upon changes in the bandstructure corresponding to different materials of iron-based superconductors. A natural explanation of the observed universality emerges when considering optimal nesting as a resonance phenomenon. Our theory is also of relevance to other itinerant system with spin-orbit coupling and nesting tendencies in the bandstructure.Comment: 15 pages, 9 figure

    Unconventional pairing and electronic dimerization instabilities in the doped Kitaev-Heisenberg model

    Full text link
    We study the quantum many-body instabilities of the t−JK−JHt -J_{\mathrm{K}} - J_{\mathrm{H}} Kitaev-Heisenberg Hamiltonian on the honeycomb lattice as a minimal model for a doped spin-orbit Mott insulator. This spin-1/21/2 model is believed to describe the magnetic properties of the layered transition-metal oxide Na2_2IrO3_3. We determine the ground-state of the system with finite charge-carrier density from the functional renormalization group (fRG) for correlated fermionic systems. To this end, we derive fRG flow-equations adapted to the lack of full spin-rotational invariance in the fermionic interactions, here represented by the highly frustrated and anisotropic Kitaev exchange term. Additionally employing a set of Ward identities for the Kitaev-Heisenberg model, the numerical solution of the flow equations suggests a rich phase diagram emerging upon doping charge carriers into the ground-state manifold (Z2\mathbb{Z}_2 quantum spin liquids and magnetically ordered phases). We corroborate superconducting triplet pp-wave instabilities driven by ferromagnetic exchange and various singlet pairing phases. For filling δ>1/4\delta > 1/4, the pp-wave pairing gives rise to a topological state with protected Majorana edge-modes. For antiferromagnetic Kitaev and ferromagnetic Heisenberg exchange we obtain bond-order instabilities at van Hove filling supported by nesting and density-of-states enhancement, yielding dimerization patterns of the electronic degrees of freedom on the honeycomb lattice. Further, our flow equations are applicable to a wider class of model Hamiltonians.Comment: 24 pages, 18 figures, corresponds to journal versio

    Interacting electrons on trilayer honeycomb lattices

    Full text link
    Few-layer graphene systems come in various stacking orders. Considering tight-binding models for electrons on stacked honeycomb layers, this gives rise to a variety of low-energy band structures near the charge neutrality point. Depending on the stacking order these band structures enhance or reduce the role of electron-electron interactions. Here, we investigate the instabilities of interacting electrons on honeycomb multilayers with a focus on trilayers with ABA and ABC stackings theoretically by means of the functional renormalization group. We find different types of competing instabilities and identify the leading ordering tendencies in the different regions of the phase diagram for a range of local and non-local short-ranged interactions. The dominant instabilities turn out to be toward an antiferromagnetic spin-density wave (SDW), a charge density wave and toward quantum spin Hall (QSH) order. Ab-initio values for the interaction parameters put the systems at the border between SDW and QSH regimes. Furthermore, we discuss the energy scales for the interaction-induced gaps of this model study and put them into context with the scales for single-layer and Bernal-stacked bilayer honeycomb lattices. This yields a comprehensive picture of the possible interaction-induced ground states of few-layer graphene.Comment: 12 pages, 12 figure

    Collective magnetic excitations of C4C_{4} symmetric magnetic states in iron-based superconductors

    Full text link
    We study the collective magnetic excitations of the recently discovered C4C_{4} symmetric spin-density wave states of iron-based superconductors with particular emphasis on their orbital character based on an itinerant multiorbital approach. This is important since the C4C_{4} symmetric spin-density wave states exist only at moderate interaction strengths where damping effects from a coupling to the continuum of particle-hole excitations strongly modifies the shape of the excitation spectra compared to predictions based on a local moment picture. We uncover a distinct orbital polarization inherent to magnetic excitations in C4C_{4} symmetric states, which provide a route to identify the different commensurate magnetic states appearing in the continuously updated phase diagram of the iron-pnictide family.Comment: 5+7 pages, 3+2 figure

    Topological superconductivity in the extended Kitaev-Heisenberg model

    Full text link
    We study superconducting pairing in the doped Kitaev-Heisenberg model by taking into account the recently proposed symmetric off-diagonal exchange Γ\Gamma. By performing a mean-field analysis, we classify all possible superconducting phases in terms of symmetry, explicitly taking into account effects of spin-orbit coupling. Solving the resulting gap equations self-consistently, we map out a phase diagram that involves several topologically nontrivial states. For Γ<0\Gamma<0, we find a competition between a time-reversal symmetry breaking chiral phase with Chern number ±1\pm1 and a time-reversal symmetric nematic phase that breaks the rotational symmetry of the lattice. On the other hand, for Γ≥0\Gamma \geq 0 we find a time-reversal symmetric phase that preserves all the lattice symmetries, thus yielding clearly distinguishable experimental signatures for all superconducting phases. Both of the time-reversal symmetric phases display a transition to a Z2\mathbb{Z}_2 non-trivial phase at high doping levels. Finally, we also include a symmetry-allowed spin-orbit coupling kinetic energy and show that it destroys a tentative symmetry protected topological order at lower doping levels. However, it can be used to tune the time-reversal symmetric phases into a Z2\mathbb{Z}_2 non-trivial phase even at lower doping
    • …
    corecore