423 research outputs found
The Influence of Plant- and Animal-Based Diets on Testosterone and Lean Body Mass is Male Rats
Background: It is commonly believed but unproven that plant-based diets result in low circulating testosterone, with minimal gains in lean body mass (LBM). Methods: Long-Evans rats (N=28) were assigned to experimental diets with either plant (PD) or animal (AD) protein sources. Animals were further divided into two additional conditions without and with exercise. Animals were fed ad libitum for 3 months and at the end of month three blood was collected for measurement of testosterone and estradiol concentrations. Dual x-ray absorptiometry assessed body composition. Results: Neither blood testosterone concentrations nor LBM differed between rats fed the PD or AD. Conclusion: Diet did not influence blood testosterone concentrations. Moreover, LBM increased at a similar rate between PD & AD groups. These findings indicate there is no significant difference between PD and AD regarding testosterone or LBM in male rats
The Association of Self-reported Physical Activity on Human Sensory Long-term Potentiation
Exercise has been shown to enhance synaptic plasticity, therefore, potentially affecting memory. While the mechanism(s) responsible for this relationship have been explored in animal models, current research suggests that exercise may possess the ability to induce synaptic long-term potentiation (LTP). Most of the LTP mechanistic work has been conducted in animal models using invasive procedures. For that reason, the purpose of the present experiment was to investigate whether self-reported exercise is related to human sensory LTP-like responses. Nineteen participants (MAGE= 24 years; 52.6% male) completed the study. Long-term potentiation-like responses were measured by incorporating a non-invasive method that assess the change in potentiation of the N1b component produced from the visual stimulus paradigm presented bilaterally in the visual field. Results demonstrated that those with higher levels of moderate-to-vigorous physical activity (MVPA) had a greater N1b change from baseline to the early time period assessment, r = ā0.43, p = 0.06. Our findings provide some suggestive evidence of an association between self-reported MVPA and LTPlike responses. Additional work is needed to support that the potentiation of the human sensory N1b component in the observed study is due to the exercise-induced synaptic changes similar to that detailed in prior animal research
The effects of human visual sensory stimuli on N1B amplitude: An EEG study
Sensory systems are widely known to exhibit adaptive mechanisms. Vision is no exception to input dependent changes in its sensitivity. Recent animal work demonstrates enhanced connectivity between neurons in the visual cortex. The purpose of the present experiment was to evaluate a human model that noninvasively alters the amplitude of the N1b component in the visual cortex of humans by means of rapid visual stimulation. Nineteen participants (Mage = 24 years; 52.6% male) completed a rapid visual stimulation paradigm involving black and white reversal checkerboards presented bilaterally in the visual field. EEG data was collected during the visual stimulation paradigm, which consisted of four main phases, a pre-tetanus block, photic stimulus, early post-tetanus, and late post-tetanus. The amplitude of the N1b component of the pre-tetanus, early post-tetanus and late post-tetanus visual evoked potentials were calculated. Change in N1b amplitude was calculated by subtracting pre-tetanus N1b amplitude from early and late post-tetanus. Results demonstrated a significant difference between pre-tetanus N1b (M = ā0.498 ĀµV, SD = 0.858) and early N1b (M = ā1.011 ĀµV, SD = 1.088), t (18) = 2.761, p = 0.039, d = 0.633. No difference was observed between pre-tetanus N1b and late N1b (p = 0.36). In conclusion, our findings suggest that it is possible to induce changes in the amplitude of the visually evoked potential N1b waveform in the visual cortex of humans non-invasively. Additional work is needed to corroborate that the potentiation of the N1b component observed in this study is due to similar mechanisms essential to prolonged strengthened neural connections exhibited in cognitive structures of the brain observed in prior animal research. If so, this will allow for the examination of strengthened neural connectivity and its interaction with multiple human sensory stimuli and behaviors
Magnetic microscopy of topologically protected homochiral domain walls in an ultrathin perpendicularly magnetized Co film
Next-generation concepts for solid-state memory devices are based on
current-driven domain wall propagation, where the wall velocity governs the
device performance. It has been shown that the domain wall velocity and the
direction of travel is controlled by the nature of the wall and its chirality.
This chirality is attributed to effects emerging from the lack of inversion
symmetry at the interface between a ferromagnet and a heavy metal, leading to
an interfacial Dzyaloshinskii-Moriya interaction that can control the shape and
chirality of the magnetic domain wall. Here we present direct imaging of domain
walls in Pt/Co/AlO films using Lorentz transmission electron microscopy,
demonstrating the presence of homochiral, and thus topologically protected,
N\'{e}el walls. Such domain walls are good candidates for dense data storage,
bringing the bit size down close to the limit of the domain wall width
Prenatal influenza vaccination and allergic and autoimmune diseases in childhood: A longitudinal, population-based linked cohort study
publishedVersio
Exploratory behavior is linked to stress physiology and social network centrality in free-living house finches (Haemorhous mexicanus)
Animal personality has been linked to individual variation in both stress physiology and social behaviors, but few studies have simultaneously examined covariation between personality traits, stress hormone levels, and behaviors in free-living animals. We investigated relationships between exploratory behavior (one aspect of animal personality), stress physiology, and social and foraging behaviors in wild house finches (Haemorhous mexicanus). We conducted novel environment assays after collecting samples of baseline and stress-induced plasma corticosterone concentrations from a subset of house finches. We then fitted individuals with Passive Integrated Transponder tags and monitored feeder use and social interactions at radio-frequency identification equipped bird feeders. First, we found that individuals with higher baseline corticosterone concentrations exhibit more exploratory behaviors in a novel environment. Second, more exploratory individuals interacted with more unique conspecifics in the wild, though this result was stronger for female than for male house finches. Third, individuals that were quick to begin exploring interacted more frequently with conspecifics than slow-exploring individuals. Finally, exploratory behaviors were unrelated to foraging behaviors, including the amount of time spent on bird feeders, a behavior previously shown to be predictive of acquiring a bacterial disease that causes annual epidemics in house finches. Overall, our results indicate that individual differences in exploratory behavior are linked to variation in both stress physiology and social network traits in free-living house finches. Such covariation has important implications for house finch ecology, as both traits can contribute to fitness in the wild
Differential Phase Contrast Imaging of the Magnetostructural Transition and Phase Boundary Motion in Uniform and Gradient-doped FeRh-based Thin Films
No abstract available
- ā¦