241 research outputs found

    The cGAS-STING Defense Pathway and Its Counteraction by Viruses

    Get PDF
    Upon viral infection, host cells mount a concerted innate immune response involving type I interferon and pro-inflammatory cytokines to enable elimination of the pathogen. Recently cGAS and STING have been identified as intracellular sensors that activate the interferon pathway in response to virus infection and thus mediate host defense against a range of DNA and RNA viruses. Here we review how viruses are sensed by the cGAS-STING signaling pathway as well as how viruses modulate this pathway. Mechanisms utilized by viral proteins to inhibit cGAS and/or STING are also discussed. On the flip side, host cells have also evolved strategies to thwart viral immune escape. The balance between host immune control and viral immune evasion is pivotal to viral pathogenesis and we discuss this virus-host stand-off in the context of the cGAS-STING innate immune pathway

    Discovery of a Novel Bat Gammaherpesvirus

    Get PDF
    Zoonosis is the leading cause of emerging infectious diseases. In a recent article, R. S. Shabman et al. (mSphere 1[1]:e00070-15, 2016, http://dx.doi.org/10.1128/mSphere.00070-15) report the identification of a novel gammaherpesvirus in a cell line derived from the microbat Myotis velifer incautus. This is the first report on a replicating, infectious gammaherpesvirus from bats. The new virus is named bat gammaherpesvirus 8 (BGHV8), also known as Myotis gammaherpesvirus 8, and is able to infect multiple cell lines, including those of human origin. Using next-generation sequencing technology, the authors constructed a full-length annotated genomic map of BGHV8. Phylogenetic analysis of several genes from BGHV8 revealed similarity to several mammalian gammaherpesviruses, including Kaposi’s sarcoma-associated herpesvirus (KSHV)

    The Viral Interferon Regulatory Factors of KSHV: Immunosuppressors or Oncogenes?

    Get PDF
    Kaposi’s sarcoma-associated herpesvirus (KSHV) is a large double-stranded DNA gammaherpesvirus, and the etiological agent for three human malignancies: Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. To establish and maintain infection, KSHV has evolved unique mechanisms to evade the host immune response. Cellular interferon regulatory factors (IRFs) are a critical part of the host anti-viral immune response. KSHV encodes four homologs of IRFs, vIRF1–4, which inhibit the activity of their cellular counterparts. vIRF1, 2, and 3 have been shown to interact directly with cellular IRFs. Additionally, the vIRFs have other functions such as modulation of Myc, p53, Notch, transforming growth factor-β, and NF-κB signaling. These activities of vIRFs may contribute to KSHV tumorigenesis. KSHV vIRF1 and vIRF3 have been implicated as oncogenes, making the understanding of KSHV vIRF function vital to understanding KSHV pathogenesis

    Molecular Mechanisms of Kaposi Sarcoma-Associated Herpesvirus (HHV8)-Related Lymphomagenesis

    Get PDF
    Approximately 15–20% of cancers are caused by viruses. Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV8), is an oncogenic virus that is the etiologic agent of not only Kaposi sarcoma but also the lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). KSHV can infect a broad tropism of cells, including B lymphocytes, wherein KSHV encodes specific viral proteins that can transform the cell. KSHV infection precedes the progression of PEL and MCD. KSHV establishes lifelong infection and has two phases of its lifecycle: latent and lytic. During the latent phase, viral genomes are maintained episomally with limited gene expression. Upon sporadic reactivation, the virus enters its replicative lytic phase to produce infectious virions. KSHV relies on its viral products to modulate host factors to evade immune detection or to co-opt their function for KSHV persistence. These manipulations dysregulate normal cell pathways to ensure cell survival and inhibit antiviral immune responses, which in turn, contribute to KSHV-associated malignancies. Here, we highlight the known molecular mechanisms of KSHV that promote lymphomagenesis and how these findings identify potential therapeutic targets for KSHV-associated lymphomas

    Kaposi's Sarcoma-Associated Herpesvirus Confers a Survival Advantage to Endothelial Cells

    Get PDF
    Kaposi’s sarcoma-associated herpesvirus (KSHV) is associated with three different human malignancies including Kaposi’s sarcoma (KS), primary effusion lymphoma and multicentric Castleman’s disease. The KS lesion is of endothelial cell in origin and is highly dependent on autocrine and paracrine factors for survival and growth. In this study, we demonstrate that KSHV infection of endothelial cells induces the activation of the pro-survival PI3K/Akt/mTOR pathway. KSHV infection of endothelial cells augmented cell survival in the presence of apoptotic inducers, including etoposide and staurosporine, and under conditions of serum deprivation. We found that KSHV infection of endothelial cells also increased the ability of these cells to form an in vitro tubular network under conditions of stress and growth factor deprivation. Finally, we show that the NF-κB and PI3K pathways are also required for endothelial tubular network formation. Collectively, these results suggest that KSHV infection of endothelial cells modulates cell signaling pathways and induces cell survival and angiogenesis, thereby contributing to the pathogenesis induced by KSHV

    Treatment of Kaposi Sarcoma-Associated Herpesvirus-Associated Cancers

    Get PDF
    Kaposi sarcoma (KS) is the most frequent AIDS-defining cancer worldwide. KS-associated herpesvirus (KSHV) is the etiological agent of KS, and the virus is also associated with two lymphoproliferative diseases. Both KS and KSHV-associated lymphomas, are cancers of unique molecular composition. They represent a challenge for cancer treatment and an opportunity to identify new mechanisms of transformation. Here, we review the current clinical insights into KSHV-associated cancers and discuss scientific insights into the pathobiology of KS, primary effusion lymphoma, and multicentric Castleman’s disease

    Inhibition of NEK2 Promotes Chemosensitivity and Reduces KSHV-positive Primary Effusion Lymphoma Burden

    Get PDF
    Non-Hodgkin lymphoma (NHL) is a common cancer in both men and women and represents a significant cancer burden worldwide. Primary effusion lymphoma (PEL) is a subtype of NHL infected with Kaposi sarcoma-associated herpesvirus (KSHV). PEL is an aggressive and lethal cancer with no current standard of care, owing largely to its propensity to develop resistance to current chemotherapeutic regimens. Here, we report a reliance of KSHV-positive PEL on the mitotic kinase, NEK2, for survival. Inhibition of NEK2 with the inhibitor, JH295, resulted in caspase 3-mediated apoptotic cell death of PEL. Furthermore, NEK2 inhibition significantly prolonged survival and reduced tumor burden in a PEL mouse model. We also demonstrate that the ABC transporter proteins, MDR1 and MRP, are most active in PEL and that inhibition of NEK2 in PEL reduced the expression and activity of these ABC transporter proteins, which are known to mediate drug resistance in cancer. Finally, we report that JH295 treatment sensitized lymphomas to other chemotherapeutic agents such as rapamycin, resulting in enhanced cancer cell death. Overall, these data offer important insight into the mechanisms underlying PEL survival and drug resistance, and suggest that NEK2 is a viable therapeutic target for PEL. SIGNIFICANCE: The mitotic kinase, NEK2, is important for the survival of KSHV-positive PEL. NEK2 inhibition resulted in PEL apoptosis and reduced tumor burden in a mouse model. NEK2 inhibition also reduced drug resistance

    AKTivation of PI3K/AKT/mTOR signaling pathway by KSHV

    Get PDF
    As an obligate intracellular parasite, Kaposi sarcoma-associated herpesvirus (KSHV) relies on the host cell machinery to meet its needs for survival, viral replication, production, and dissemination of progeny virions. KSHV is a gammaherpesvirus that is associated with three different malignancies: Kaposi sarcoma (KS), and two B cell lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman’s disease. KSHV viral proteins modulate the cellular phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway, which is a ubiquitous pathway that also controls B lymphocyte proliferation and development. We review the mechanisms by which KSHV manipulates the PI3K/AKT/mTOR pathway, with a specific focus on B cells

    AKTivation of PI3K/AKT/mTOR signaling pathway by KSHV

    Get PDF
    As an obligate intracellular parasite, Kaposi sarcoma-associated herpesvirus (KSHV) relies on the host cell machinery to meet its needs for survival, viral replication, production, and dissemination of progeny virions. KSHV is a gammaherpesvirus that is associated with three different malignancies: Kaposi sarcoma (KS), and two B cell lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman’s disease. KSHV viral proteins modulate the cellular phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway, which is a ubiquitous pathway that also controls B lymphocyte proliferation and development. We review the mechanisms by which KSHV manipulates the PI3K/AKT/mTOR pathway, with a specific focus on B cells

    Kaposi sarcoma–associated herpesvirus: immunobiology, oncogenesis, and therapy

    Get PDF
    Kaposi sarcoma–associated herpesvirus (KSHV), also known as human herpesvirus 8, is the etiologic agent underlying Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. This human gammaherpesvirus was discovered in 1994 by Drs. Yuan Chang and Patrick Moore. Today, there are over five thousand publications on KSHV and its associated malignancies. In this article, we review recent and ongoing developments in the KSHV field, including molecular mechanisms of KSHV pathogenesis, clinical aspects of KSHV-associated diseases, and current treatments for cancers associated with this virus
    corecore