142 research outputs found
Methods for identifying surgical wound infection after discharge from hospital: a systematic review
Background: Wound infections are a common complication of surgery that add significantly to the morbidity of patients and costs of treatment. The global trend towards reducing length of hospital stay post-surgery and the increase in day case surgery means that surgical site infections (SSI) will increasingly occur after hospital discharge. Surveillance of SSIs is important because rates of SSI are viewed as a measure of hospital performance, however accurate detection of SSIs post-hospital discharge is not straightforward. Methods: We conducted a systematic review of methods of post discharge surveillance for surgical wound infection and undertook a national audit of methods of post-discharge surveillance for surgical site infection currently used within United Kingdom NHS Trusts. Results: Seven reports of six comparative studies which examined the validity of post-discharge surveillance methods were located; these involved different comparisons and some had methodological limitations, making it difficult to identify an optimal method. Several studies evaluated automated screening of electronic records and found this to be a useful strategy for the identification of SSIs that occurred post discharge. The audit identified a wide range of relevant post-discharge surveillance programmes in England, Scotland and Wales and Northern Ireland; however, these programmes used varying approaches for which there is little supporting evidence of validity and/or reliability. Conclusion: In order to establish robust methods of surveillance for those surgical site infections that occur post discharge, there is a need to develop a method of case ascertainment that is valid and reliable post discharge. Existing research has not identified a valid and reliable method. A standardised definition of wound infection (e.g. that of the Centres for Disease Control) should be used as a basis for developing a feasible, valid and reliable approach to defining post discharge SSI. At a local level, the method used to ascertain post discharge SSI will depend upon the purpose of the surveillance, the nature of available routine data and the resources available. © 2006 Petherick et al; licensee, BioMed Central Ltd
Methods for identifying surgical wound infection after discharge from hospital: a systematic review.
Background: Wound infections are a common complication of surgery that add significantly to the morbidity of patients and costs of treatment. The global trend towards reducing length of hospital stay post-surgery and the increase in day case surgery means that surgical site infections (SSI) will increasingly occur after hospital discharge. Surveillance of SSIs is important because rates of SSI are viewed as a measure of hospital performance, however accurate detection of SSIs post-hospital discharge is not straightforward. Methods: We conducted a systematic review of methods of post discharge surveillance for surgical wound infection and undertook a national audit of methods of post-discharge surveillance for surgical site infection currently used within United Kingdom NHS Trusts. Results: Seven reports of six comparative studies which examined the validity of post-discharge surveillance methods were located; these involved different comparisons and some had methodological limitations, making it difficult to identify an optimal method. Several studies evaluated automated screening of electronic records and found this to be a useful strategy for the identification of SSIs that occurred post discharge. The audit identified a wide range of relevant post-discharge surveillance programmes in England, Scotland and Wales and Northern Ireland; however, these programmes used varying approaches for which there is little supporting evidence of validity and/or reliability. Conclusion: In order to establish robust methods of surveillance for those surgical site infections that occur post discharge, there is a need to develop a method of case ascertainment that is valid and reliable post discharge. Existing research has not identified a valid and reliable method. A standardised definition of wound infection ( e. g. that of the Centres for Disease Control) should be used as a basis for developing a feasible, valid and reliable approach to defining post discharge SSI. At a local level, the method used to ascertain post discharge SSI will depend upon the purpose of the surveillance, the nature of available routine data and the resources available
Virulence Factors of Pseudomonas aeruginosa Induce Both the Unfolded Protein and Integrated Stress Responses in Airway Epithelial Cells.
Pseudomonas aeruginosa infection can be disastrous in chronic lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease. Its toxic effects are largely mediated by secreted virulence factors including pyocyanin, elastase and alkaline protease (AprA). Efficient functioning of the endoplasmic reticulum (ER) is crucial for cell survival and appropriate immune responses, while an excess of unfolded proteins within the ER leads to "ER stress" and activation of the "unfolded protein response" (UPR). Bacterial infection and Toll-like receptor activation trigger the UPR most likely due to the increased demand for protein folding of inflammatory mediators. In this study, we show that cell-free conditioned medium of the PAO1 strain of P. aeruginosa, containing secreted virulence factors, induces ER stress in primary bronchial epithelial cells as evidenced by splicing of XBP1 mRNA and induction of CHOP, GRP78 and GADD34 expression. Most aspects of the ER stress response were dependent on TAK1 and p38 MAPK, except for the induction of GADD34 mRNA. Using various mutant strains and purified virulence factors, we identified pyocyanin and AprA as inducers of ER stress. However, the induction of GADD34 was mediated by an ER stress-independent integrated stress response (ISR) which was at least partly dependent on the iron-sensing eIF2α kinase HRI. Our data strongly suggest that this increased GADD34 expression served to protect against Pseudomonas-induced, iron-sensitive cell cytotoxicity. In summary, virulence factors from P. aeruginosa induce ER stress in airway epithelial cells and also trigger the ISR to improve cell survival of the host
p53 and translation attenuation regulate distinct cell cycle checkpoints during endoplasmic reticulum (ER) stress.
Cell cycle checkpoints ensure that proliferation occurs only under permissive conditions, but their role in linking nutrient availability to cell division is incompletely understood. Protein folding within the endoplasmic reticulum (ER) is exquisitely sensitive to energy supply and amino acid sources because deficiencies impair luminal protein folding and consequently trigger ER stress signaling. Following ER stress, many cell types arrest within the G(1) phase, although recent studies have identified a novel ER stress G(2) checkpoint. Here, we report that ER stress affects cell cycle progression via two classes of signal: an early inhibition of protein synthesis leading to G(2) delay involving CHK1 and a later induction of G(1) arrest associated both with the induction of p53 target genes and loss of cyclin D(1). We show that substitution of p53/47 for p53 impairs the ER stress G(1) checkpoint, attenuates the recovery of protein translation, and impairs induction of NOXA, a mediator of cell death. We propose that cell cycle regulation in response to ER stress comprises redundant pathways invoked sequentially first to impair G(2) progression prior to ultimate G(1) arrest
Engineering a hyperactive TcBuster transposase for efficient gene delivery for cell therapy applications
Please click Additional Files below to see the full abstrac
Control intervention design for preclinical and clinical trials: consensus-based core recommendations from the third Stroke Recovery and Rehabilitation Roundtable
Control comparator selection is a critical trial design issue. Preclinical and clinical investigators who are doing trials of stroke recovery and rehabilitation interventions must carefully consider the appropriateness and relevance of their chosen control comparator as the benefit of an experimental intervention is established relative to a comparator. Establishing a strong rationale for a selected comparator improves the integrity of the trial and validity of its findings. This Stroke Recovery and Rehabilitation Roundtable (SRRR) taskforce used a graph theory voting system to rank the importance and ease of addressing challenges during control comparator design. "Identifying appropriate type of control" was ranked easy to address and very important, "variability in usual care" was ranked hard to address and of low importance, and "understanding the content of the control and how it differs from the experimental intervention" was ranked very important but not easy to address. The CONtrol DeSIGN (CONSIGN) decision support tool was developed to address the identified challenges and enhance comparator selection, description, and reporting. CONSIGN is a web-based tool inclusive of seven steps that guide the user through control comparator design. The tool was refined through multiple rounds of pilot testing that included more than 130 people working in neurorehabilitation research. Four hypothetical exemplar trials, which span preclinical, mood, aphasia, and motor recovery, demonstrate how the tool can be applied in practice. Six consensus recommendations are defined that span research domains, professional disciplines, and international borders.</p
Lessons from clinical implementation of a preemptive pharmacogenetic panel as part of a testing pilot program with an employer-sponsored medical plan
Introduction: This manuscript reports on a pilot program focused on implementing pharmacogenetic testing within the framework of an employer-sponsored medical plan at University of Florida (UF) Health. The aim was to understand the challenges associated with program implementation and to gather insights into patient attitudes towards PGx testing.Methods: The pilot program adopted a partially preemptive approach, targeting patients on current prescriptions for medications with relevant gene-drug associations. Patients were contacted via phone or through the MyChart system and offered pharmacogenetic testing with no additional direct costs.Results: Of 244 eligible patients, 110 agreed to participate. However, only 61 returned the mailed DNA collection kits. Among these, 89% had at least one potentially actionable genotype-based phenotype. Post-test follow-up revealed that while the majority viewed the process positively, 71% preferred a consultation with a pharmacogenetic specialist for better understanding of their results. Barriers to implementation ranged from fatigue with the healthcare system to a lack of understanding of the pharmacogenetic testing and concerns about privacy and potential misuse of genetic data.Conclusion: The findings underscore the need for clearer patient education on pharmacogenetic results and suggest the importance of the role of pharmacogenetic-trained pharmacists in delivering this education. They also highlight issues with relying on incomplete or inaccurate medication lists in patients’ electronic health record. The implementation revealed less obvious challenges, the understanding of which could be beneficial for the success of future preemptive pharmacogenetic implementation programs. The insights from the pilot program served to bridge the information gap between patients, providers, and pharmacogenetic -specialists, with the ultimate goal of improving patient care
Elucidating pathways of Toxoplasma gondii invasion in the gastrointestinal tract: involvement of the tight junction protein occludin
Toxoplasma gondii is an obligate intracellular parasite infecting one third of the world’s population. The small intestine is the parasite’s primary route of infection, although the pathway of epithelium transmigration remains unclear. Using an in vitro invasion assay and live imaging we showed that T. gondii (RH) tachyzoites infect and transmigrate between adjacent intestinal epithelial cells in polarized monolayers without altering barrier integrity, despite eliciting the production of specific inflammatory mediators and chemokines. During invasion, T. gondii co-localized with occludin. Reducing the levels of endogenous cellular occludin with specific small interfering RNAs significantly reduced the ability of T. gondii to penetrate between and infect epithelial cells. Furthermore, an in vitro invasion and binding assays using recombinant occludin fragments established the capacity of the parasite to bind occludin and in particular to the extracellular loops of the protein. These findings provide evidence for occludin playing a role in the invasion of T. gondii in small intestinal epithelial cells
Control intervention design for preclinical and clinical trials: Consensus-based core recommendations from the third Stroke Recovery and Rehabilitation Roundtable
Control comparator selection is a critical trial design issue. Preclinical and clinical investigators who are doing trials of stroke recovery and rehabilitation interventions must carefully consider the appropriateness and relevance of their chosen control comparator as the benefit of an experimental intervention is established relative to a comparator. Establishing a strong rationale for a selected comparator improves the integrity of the trial and validity of its findings. This Stroke Recovery and Rehabilitation Roundtable (SRRR) taskforce used a graph theory voting system to rank the importance and ease of addressing challenges during control comparator design. “Identifying appropriate type of control” was ranked easy to address and very important, “variability in usual care” was ranked hard to address and of low importance, and “understanding the content of the control and how it differs from the experimental intervention” was ranked very important but not easy to address. The CONtrol DeSIGN (CONSIGN) decision support tool was developed to address the identified challenges and enhance comparator selection, description, and reporting. CONSIGN is a web-based tool inclusive of seven steps that guide the user through control comparator design. The tool was refined through multiple rounds of pilot testing that included more than 130 people working in neurorehabilitation research. Four hypothetical exemplar trials, which span preclinical, mood, aphasia, and motor recovery, demonstrate how the tool can be applied in practice. Six consensus recommendations are defined that span research domains, professional disciplines, and international borders
Productive Hepatitis C Virus Infection of Stem Cell-Derived Hepatocytes Reveals a Critical Transition to Viral Permissiveness during Differentiation
Primary human hepatocytes isolated from patient biopsies represent the most physiologically relevant cell culture model for hepatitis C virus (HCV) infection, but these primary cells are not readily accessible, display individual variability, and are largely refractory to genetic manipulation. Hepatocyte-like cells differentiated from pluripotent stem cells provide an attractive alternative as they not only overcome these shortcomings but can also provide an unlimited source of noncancer cells for both research and cell therapy. Despite its promise, the permissiveness to HCV infection of differentiated human hepatocyte-like cells (DHHs) has not been explored. Here we report a novel infection model based on DHHs derived from human embryonic (hESCs) and induced pluripotent stem cells (iPSCs). DHHs generated in chemically defined media under feeder-free conditions were subjected to infection by both HCV derived in cell culture (HCVcc) and patient-derived virus (HCVser). Pluripotent stem cells and definitive endoderm were not permissive for HCV infection whereas hepatic progenitor cells were persistently infected and secreted infectious particles into culture medium. Permissiveness to infection was correlated with induction of the liver-specific microRNA-122 and modulation of cellular factors that affect HCV replication. RNA interference directed toward essential cellular cofactors in stem cells resulted in HCV-resistant hepatocyte-like cells after differentiation. The ability to infect cultured cells directly with HCV patient serum, to study defined stages of viral permissiveness, and to produce genetically modified cells with desired phenotypes all have broad significance for host-pathogen interactions and cell therapy
- …