131 research outputs found
Dynamical crystal creation with polar molecules or Rydberg atoms in optical lattices
We investigate the dynamical formation of crystalline states with systems of polar molecules or Rydberg atoms loaded into a deep optical lattice. External fields in these systems can be used to couple the atoms or molecules between two internal states: one that is weakly interacting and one that exhibits a strong dipole-dipole interaction. By appropriate time variation of the external fields we show that it is possible to produce crystalline states of the strongly interacting states with high filling fractions chosen via the parameters of the coupling.We study the coherent dynamics of this process in one dimension (1D) using a modified form of the time-evolving block decimation (TEBD) algorithm, and obtain crystalline states for system sizes and parameters corresponding to realistic experimental configurations. For polar molecules these crystalline states will be long-lived, assisting in a characterization of the state via the measurement of correlation functions. We also show that as the coupling strength increases in the model, the crystalline order is broken. This is characterized in 1D by a change in density-density correlation functions, which decay to a constant in the crystalline regime, but show different regions of exponential and algebraic decay for larger coupling strengths
Development and feasibility testing of a smart phone based attentive eating intervention
BACKGROUND: Attentive eating means eating devoid of distraction and increasing awareness and memory for food being consumed. Encouraging individuals to eat more attentively could help reduce calorie intake, as a strong evidence base suggests that memory and awareness of food being consumed substantially influence energy intake. METHODS: The development and feasibility testing of a smartphone based attentive eating intervention is reported. Informed by models of behavioral change, a smartphone application was developed. Feasibility was tested in twelve overweight and obese volunteers, sampled from university staff. Participants used the application during a four week trial and semi-structured interviews were conducted to assess acceptability and to identify barriers to usage. We also recorded adherence by downloading application usage data from participants' phones at the end of the trial. RESULTS: Adherence data indicated that participants used the application regularly. Participants also felt the application was easy to use and lost weight during the trial. Thematic analysis indicated that participants felt that the application raised their awareness of what they were eating. Analysis also indicated barriers to using a smartphone application to change dietary behavior. CONCLUSIONS: An attentive eating based intervention using smartphone technology is feasible and testing of its effectiveness for dietary change and weight loss is warranted
A single trapped atom in front of an oscillating mirror
We investigate the Wigner-Weisskopf decay of a two level atom in front of an
oscillating mirror. This work builds on and extends previous theoretical and
experimental studies of the effects of a static mirror on spontaneous decay and
resonance fluorescence. The spontaneously emitted field is inherently
non-stationary due to the time-dependent boundary conditions and in order to
study its spectral distribution we employ the operational definition of the
spectrum of non-stationary light due to the seminal work by Eberly and
Wodkiewicz. We find a rich dependence of this spectrum as well as of the
effective decay rates and level shifts on the mirror-atom distance and on the
amplitude and frequency of oscillations of the mirror. The results presented
here provide the basis for future studies of more complex setups, where the
motion of the atom and/or the mirror are included as quantum degrees of
freedom.Comment: 10 pages, 12 figures, contribution to the special issue in Optics
Communications devoted to Krzysztof Wodkiewicz's memor
Emergence of influential spreaders in modified rumor models
The burst in the use of online social networks over the last decade has
provided evidence that current rumor spreading models miss some fundamental
ingredients in order to reproduce how information is disseminated. In
particular, recent literature has revealed that these models fail to reproduce
the fact that some nodes in a network have an influential role when it comes to
spread a piece of information. In this work, we introduce two mechanisms with
the aim of filling the gap between theoretical and experimental results. The
first model introduces the assumption that spreaders are not always active
whereas the second model considers the possibility that an ignorant is not
interested in spreading the rumor. In both cases, results from numerical
simulations show a higher adhesion to real data than classical rumor spreading
models. Our results shed some light on the mechanisms underlying the spreading
of information and ideas in large social systems and pave the way for more
realistic diffusion models.Comment: 14 Pages, 6 figures, accepted for publication in Journal of
Statistical Physic
R-local Delaunay inhibition model
Let us consider the local specification system of Gibbs point process with
inhib ition pairwise interaction acting on some Delaunay subgraph specifically
not con taining the edges of Delaunay triangles with circumscribed circle of
radius grea ter than some fixed positive real value . Even if we think that
there exists at least a stationary Gibbs state associated to such system, we do
not know yet how to prove it mainly due to some uncontrolled "negative"
contribution in the expression of the local energy needed to insert any number
of points in some large enough empty region of the space. This is solved by
introducing some subgraph, called the -local Delaunay graph, which is a
slight but tailored modification of the previous one. This kind of model does
not inherit the local stability property but satisfies s ome new extension
called -local stability. This weakened property combined with the local
property provides the existence o f Gibbs state.Comment: soumis \`{a} Journal of Statistical Physics 27 page
Optimized loading of an optical dipole trap for the production of Chromium BECs
We report on a strategy to maximize the number of chromium atoms transferred
from a magneto-optical trap into an optical trap through accumulation in
metastable states via strong optical pumping. We analyse how the number of
atoms in a chromium Bose Einstein condensate can be raised by a proper handling
of the metastable state populations. Four laser diodes have been implemented to
address the four levels that are populated during the MOT phase. The individual
importance of each state is specified. To stabilize two of our laser diode, we
have developed a simple ultrastable passive reference cavity whose long term
stability is better than 1 MHz
A scalable quantum computer with an ultranarrow optical transition of ultracold neutral atoms in an optical lattice
We propose a new quantum-computing scheme using ultracold neutral ytterbium
atoms in an optical lattice. The nuclear Zeeman sublevels define a qubit. This
choice avoids the natural phase evolution due to the magnetic dipole
interaction between qubits. The Zeeman sublevels with large magnetic moments in
the long-lived metastable state are also exploited to address individual atoms
and to construct a controlled-multiqubit gate. Estimated parameters required
for this scheme show that this proposal is scalable and experimentally
feasible.Comment: 6 pages, 6 figure
Quantum Computing and Quantum Simulation with Group-II Atoms
Recent experimental progress in controlling neutral group-II atoms for
optical clocks, and in the production of degenerate gases with group-II atoms
has given rise to novel opportunities to address challenges in quantum
computing and quantum simulation. In these systems, it is possible to encode
qubits in nuclear spin states, which are decoupled from the electronic state in
the S ground state and the long-lived P metastable state on the
clock transition. This leads to quantum computing scenarios where qubits are
stored in long lived nuclear spin states, while electronic states can be
accessed independently, for cooling of the atoms, as well as manipulation and
readout of the qubits. The high nuclear spin in some fermionic isotopes also
offers opportunities for the encoding of multiple qubits on a single atom, as
well as providing an opportunity for studying many-body physics in systems with
a high spin symmetry. Here we review recent experimental and theoretical
progress in these areas, and summarise the advantages and challenges for
quantum computing and quantum simulation with group-II atoms.Comment: 11 pages, 7 figures, review for special issue of "Quantum Information
Processing" on "Quantum Information with Neutral Particles
Inserting single Cs atoms into an ultracold Rb gas
We report on the controlled insertion of individual Cs atoms into an
ultracold Rb gas at about 400 nK. This requires to combine the techniques
necessary for cooling, trapping and manipulating single laser cooled atoms
around the Doppler temperature with an experiment to produce ultracold
degenerate quantum gases. In our approach, both systems are prepared in
separated traps and then combined. Our results pave the way for coherent
interaction between a quantum gas and a single or few neutral atoms of another
species
Quantum computing implementations with neutral particles
We review quantum information processing with cold neutral particles, that
is, atoms or polar molecules. First, we analyze the best suited degrees of
freedom of these particles for storing quantum information, and then we discuss
both single- and two-qubit gate implementations. We focus our discussion mainly
on collisional quantum gates, which are best suited for atom-chip-like devices,
as well as on gate proposals conceived for optical lattices. Additionally, we
analyze schemes both for cold atoms confined in optical cavities and hybrid
approaches to entanglement generation, and we show how optimal control theory
might be a powerful tool to enhance the speed up of the gate operations as well
as to achieve high fidelities required for fault tolerant quantum computation.Comment: 19 pages, 12 figures; From the issue entitled "Special Issue on
Neutral Particles
- …