124 research outputs found
Potential of Core-Collapse Supernova Neutrino Detection at JUNO
JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve
Detection of the Diffuse Supernova Neutrino Background with JUNO
As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO
Real-time Monitoring for the Next Core-Collapse Supernova in JUNO
Core-collapse supernova (CCSN) is one of the most energetic astrophysical
events in the Universe. The early and prompt detection of neutrinos before
(pre-SN) and during the SN burst is a unique opportunity to realize the
multi-messenger observation of the CCSN events. In this work, we describe the
monitoring concept and present the sensitivity of the system to the pre-SN and
SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is
a 20 kton liquid scintillator detector under construction in South China. The
real-time monitoring system is designed with both the prompt monitors on the
electronic board and online monitors at the data acquisition stage, in order to
ensure both the alert speed and alert coverage of progenitor stars. By assuming
a false alert rate of 1 per year, this monitoring system can be sensitive to
the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos
up to about 370 (360) kpc for a progenitor mass of 30 for the case
of normal (inverted) mass ordering. The pointing ability of the CCSN is
evaluated by using the accumulated event anisotropy of the inverse beta decay
interactions from pre-SN or SN neutrinos, which, along with the early alert,
can play important roles for the followup multi-messenger observations of the
next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure
JUNO Sensitivity to Invisible Decay Modes of Neutrons
We explore the bound neutrons decay into invisible particles (e.g.,
or ) in the JUNO liquid scintillator
detector. The invisible decay includes two decay modes: and . The invisible decays of -shell neutrons in
will leave a highly excited residual nucleus. Subsequently, some
de-excitation modes of the excited residual nuclei can produce a time- and
space-correlated triple coincidence signal in the JUNO detector. Based on a
full Monte Carlo simulation informed with the latest available data, we
estimate all backgrounds, including inverse beta decay events of the reactor
antineutrino , natural radioactivity, cosmogenic isotopes and
neutral current interactions of atmospheric neutrinos. Pulse shape
discrimination and multivariate analysis techniques are employed to further
suppress backgrounds. With two years of exposure, JUNO is expected to give an
order of magnitude improvement compared to the current best limits. After 10
years of data taking, the JUNO expected sensitivities at a 90% confidence level
are and
.Comment: 28 pages, 7 figures, 4 table
Recommended from our members
Measurement of the θ13 Neutrino Mixing Angle at Daya Bay via Neutron Capture on Hydrogen
Neutrinos exhibit a unique behavior compared to other Standard Model particles: neutrino oscillations. This phenomenon is the periodic change of probability to interact with certain lepton flavors as they propagate. Measuring the oscillation parameters accurately is crucial to exploring the unanswered questions related to neutrino physics, most notably the possibility that these particles violate the CP symmetry or that there are more than three generations of them.The Daya Bay Reactor Neutrino Experiment is known for making the first unambiguous determination of the non-zero value of the θ13 mixing angle and producing the most precise measurements of this parameter ever since. Located in Southern China, Daya Bay utilizes eight strategically placed identically-designed detectors to measure the disappearance ofelectron antineutrinos from six nuclear reactor cores. The antineutrino interactions are identified through the double coincidence signature of the inverse beta decay. The neutron from this interaction can get captured on a nucleus of either gadolinium (nGd) or hydrogen (nH). Given that the statistical samples are entirely separate and the systematics largely decoupled, the nH and nGd measurements are virtually independent of one another. This makes the nH analysis valuable as a precise cross-check to the nGd analysis.Daya Bay’s world-leading measurement of θ13 is the result of analyzing the former. The measurement of the latter sample is presented in this thesis, including the event selection, removal of background events, evaluation of the systematic uncertainties, and fitting procedure, ultimately leading to the best fit results of sin2 2θ13 = 0.0776 ± 0.0053 and∆m2 ee = (2.80 ± 0.14) × 10−3 eV2. This measurement is among the second most precise measurements of θ13 globally
Measurement of the θ13 Neutrino Mixing Angle at Daya Bay via Neutron Capture on Hydrogen
Ergonomics in surgical environments
The majority of work-related musculoskeletal disorders (WRMDs) in surgery are mostly related to sustained position and awkward postures, forcing non-natural gestures in surgeon ́s body.This arti- cle points to describe the different ailments studied during surgical tasks over the years: causes which increase the discomfort and fatigue, and effects related with them, in order highlight the cur- rent working conditions and how might be improved. To do that, a research is done to understand the main issues related on full body ailments and how is have been evaluated in different types of surgery, for which, the lead postural analysis technologies are presented, understanding Rapid Upper Limb Assessment system (RULA) the most suitable method to stablish priorities for preven- tive/corrective actions.Knowing the ailment ́s causes it have been necessary to define the critical points related with the causes, as instrumentation design, regulations in operating tables and chairs, pedal drives, and other surgical elements that require a ergonomic improvements, so that, the main design guidelines have been col- lected in this document and have been compared with a sample of current products available in the market, with the purpose of knowing the degree of implication between the requirements re- quested by the surgical teams and the companies dedicated to their design
Recommended from our members
The Design and Sensitivity of JUNO's scintillator radiopurity pre-detector OSIRIS
The OSIRIS detector is a subsystem of the liquid scintillator fillling chain
of the JUNO reactor neutrino experiment. Its purpose is to validate the
radiopurity of the scintillator to assure that all components of the JUNO
scintillator system work to specifications and only neutrino-grade scintillator
is filled into the JUNO Central Detector. The aspired sensitivity level of
g/g of U and Th requires a large (20 m)
detection volume and ultralow background levels. The present paper reports on
the design and major components of the OSIRIS detector, the detector simulation
as well as the measuring strategies foreseen and the sensitivity levels to U/Th
that can be reached in this setup
Recommended from our members
JUNO Physics and Detector
The Jiangmen Underground Neutrino Observatory (JUNO) is a 20 kton LS detector
at 700-m underground. An excellent energy resolution and a large fiducial
volume offer exciting opportunities for addressing many important topics in
neutrino and astro-particle physics. With 6 years of data, the neutrino mass
ordering can be determined at 3-4 sigma and three oscillation parameters can be
measured to a precision of 0.6% or better by detecting reactor antineutrinos.
With 10 years of data, DSNB could be observed at 3-sigma; a lower limit of the
proton lifetime of 8.34e33 years (90% C.L.) can be set by searching for
p->nu_bar K^+; detection of solar neutrinos would shed new light on the solar
metallicity problem and examine the vacuum-matter transition region. A
core-collapse supernova at 10 kpc would lead to ~5000 IBD and ~2000 (300)
all-flavor neutrino-proton (electron) scattering events. Geo-neutrinos can be
detected with a rate of ~400 events/year. We also summarize the final design of
the JUNO detector and the key R&D achievements. All 20-inch PMTs have been
tested. The average photon detection efficiency is 28.9% for the 15,000 MCP
PMTs and 28.1% for the 5,000 dynode PMTs, higher than the JUNO requirement of
27%. Together with the >20 m attenuation length of LS, we expect a yield of
1345 p.e. per MeV and an effective energy resolution of 3.02%/\sqrt{E (MeV)}$
in simulations. The underwater electronics is designed to have a loss rate
<0.5% in 6 years. With degassing membranes and a micro-bubble system, the radon
concentration in the 35-kton water pool could be lowered to <10 mBq/m^3.
Acrylic panels of radiopurity <0.5 ppt U/Th are produced. The 20-kton LS will
be purified onsite. Singles in the fiducial volume can be controlled to ~10 Hz.
The JUNO experiment also features a double calorimeter system with 25,600
3-inch PMTs, a LS testing facility OSIRIS, and a near detector TAO
- …