297 research outputs found
Locating earthquakes around Antarctica by using neural networks based on deep learning
The Tenth Symposium on Polar Science/Ordinary sessions: [OG] Polar Geosciences, Wed. 4 Dec. / Entrance Hall (1st floor), National Institute of Polar Researc
Absence of in vivo selection for K13 mutations after artemether–lumefantrine treatment in Uganda
Additional file 1. Eligibility criteria for recruitment into the therapeutic efficacy study and the molecular study
Synthesis, Crystal Structures, Electronic Spectra, and Magnetic Properties of Thiolato-Bridged Trinuclear Cobalt(II) Complexes with N, N, S-Tridentate Thiolate Ligands
New trinuclear CoII complexes, [{Co(apaet)2}2Co]X2 (apaet– = 2-[(3-aminopropyl)amino]ethanethiolato; X = SCN (1), ClO4 (2), NO3 (3), Cl (4), Br (5), I (6)) and [{Co(apampt)2}2Co]X2 (apampt– = 1-[(3-aminopropyl)amino]-2-methylpropane-2-thiolato; X = NO3(7), ClO4 (8), Cl (9), Br (10), I (11)), and mononuclear CoIII complexes, [Co(apaet)2]X (X = ClO4 (12), NO3 (13)), were synthesized. Single-crystal X-ray crystallography of 1 and 7 confirmed that the trinuclear complexes have a linear arrangement of octahedral CoIIS2N4-tetrahedral CoIIS4-octahedral CoIIS2N4 chromophores where two thiolate ligands are coordinated to each terminal Co atom in a mer coordination mode and the two thiolato S atoms are further bound to the central Co atom, which is consistent with the electronic spectra and antiferromagnetic propertie
The ASTRO-H X-ray Observatory
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly
successful X-ray missions initiated by the Institute of Space and Astronautical
Science (ISAS). ASTRO-H will investigate the physics of the high-energy
universe via a suite of four instruments, covering a very wide energy range,
from 0.3 keV to 600 keV. These instruments include a high-resolution,
high-throughput spectrometer sensitive over 0.3-2 keV with high spectral
resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in
the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers
covering 5-80 keV, located in the focal plane of multilayer-coated, focusing
hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12
keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and
a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the
40-600 keV band. The simultaneous broad bandpass, coupled with high spectral
resolution, will enable the pursuit of a wide variety of important science
themes.Comment: 22 pages, 17 figures, Proceedings of the SPIE Astronomical
Instrumentation "Space Telescopes and Instrumentation 2012: Ultraviolet to
Gamma Ray
Efficacy of mizoribine pulse therapy in patients with rheumatoid arthritis who show a reduced or insufficient response to infliximab
The efficacy of infliximab, a chimeric antibody against tumor necrosis factor-α used to treat patients with rheumatoid arthritis (RA), tends to decrease as patients develop human antichimeric antibody against infliximab (HACA). The clinical study reported here was designed to evaluate the efficacy of mizoribine (MZR) pulse therapy in patients who show a reduced or insufficient response to infliximab. Ten RA patients who had active arthritis despite infliximab therapy were treated with MZR pulse therapy at a dose of 100 mg MZR and methotrexate (MTX) and the disease activity assessed at baseline and at weeks 4–8, 12–16, and 20–24. The dose was increased to 150 mg in those patients who showed an insufficient response to MZR. The mean 28-joint disease activity score (DAS28) at weeks 12–16 and 20–24 of therapy was significantly lower than that at baseline. A moderate or good European League against Rheumatism (EULAR) response was achieved in seven patients (70%) at weeks 12–16 and in five patients (50%) at weeks 20–24. The dose of 150 mg MZR was effective in one of the three patients who showed an insufficient response to pulse therapy with 100 mg MZR. Based on these results, we propose that MZR pulse therapy should be attempted before the patient is switched to other biologics
ICG fluorescence for lung metastasis of HCC
Background: Indocyanine green (ICG) accumulates in hepatocellular carcinoma (HCC), and tumor fluorescence can be observed under irradiation with near infrared light (NIR). This study investigated the clinical utility of ICG fluorescence imaging during resection of pulmonary metastases of HCC.
Methods: From April 2010 to June 2018, six patients with suspected pulmonary metastasis of HCC were enrolled prospectively. Prior to surgery, all patients underwent the ICG hepatic function test following intravenous administration of ICG (0.5 mg/kg body weight). During surgery, metastatic HCC was identified by observation of ICG fluorescence, allowing assessment of the surgical margin. Tumor fluorescence was also evaluated on cut sections.
Results: A total of 11 metastatic HCCs were resected in six patients at nine operations. Eight lesions were removed by wedge resection and 3 lesions were managed by lobectomy. During surgery, tumor fluorescence could be confirmed through the visceral pleura in 6 out of 7 lesions treated by wedge resection, while NIR irradiation was difficult for 1 lesion. For these 6 lesions, the median distance from the tumor to the visceral pleura and the median surgical margin were 0 mm (range, 0–2 mm) and 14 mm (range, 11–17 mm), respectively. When cut sections were examined, all tumors emitted fluorescence. All lesions were histologically confirmed to be metastatic HCC.
Conclusions: In patients with pulmonary metastasis of HCC, ICG fluorescence imaging is useful for identifying the tumor and securing its margin when the lesion is peripheral and wedge resection is planned
The Quiescent Intracluster Medium in the Core of the Perseus Cluster
Clusters of galaxies are the most massive gravitationally-bound objects in
the Universe and are still forming. They are thus important probes of
cosmological parameters and a host of astrophysical processes. Knowledge of the
dynamics of the pervasive hot gas, which dominates in mass over stars in a
cluster, is a crucial missing ingredient. It can enable new insights into
mechanical energy injection by the central supermassive black hole and the use
of hydrostatic equilibrium for the determination of cluster masses. X-rays from
the core of the Perseus cluster are emitted by the 50 million K diffuse hot
plasma filling its gravitational potential well. The Active Galactic Nucleus of
the central galaxy NGC1275 is pumping jetted energy into the surrounding
intracluster medium, creating buoyant bubbles filled with relativistic plasma.
These likely induce motions in the intracluster medium and heat the inner gas
preventing runaway radiative cooling; a process known as Active Galactic
Nucleus Feedback. Here we report on Hitomi X-ray observations of the Perseus
cluster core, which reveal a remarkably quiescent atmosphere where the gas has
a line-of-sight velocity dispersion of 164+/-10 km/s in a region 30-60 kpc from
the central nucleus. A gradient in the line-of-sight velocity of 150+/-70 km/s
is found across the 60 kpc image of the cluster core. Turbulent pressure
support in the gas is 4% or less of the thermodynamic pressure, with large
scale shear at most doubling that estimate. We infer that total cluster masses
determined from hydrostatic equilibrium in the central regions need little
correction for turbulent pressure.Comment: 31 pages, 11 Figs, published in Nature July
- …
