6 research outputs found
Photon-Mediated Quantum Gate between Two Trapped Neutral Atoms in an Optical Cavity
Quantum logic gates are fundamental building blocks of quantum computers.
Their integration into quantum networks requires strong qubit coupling to
network channels, as can be realized with neutral atoms and optical photons in
cavity quantum electrodynamics. Here we demonstrate that the long-range
interaction mediated by a flying photon performs a gate between two stationary
atoms inside an optical cavity from which the photon is reflected. This single
step executes the gate in . We show an entangling operation
between the two atoms by generating a Bell state with 76(2)% fidelity. The gate
also operates as a CNOT. We demonstrate 74.1(1.6)% overlap between the observed
and the ideal gate output, limited by the state preparation fidelity of
80.2(0.8)%. As the atoms are efficiently connected to a photonic channel, our
gate paves the way towards quantum networking with multiqubit nodes and the
distribution of entanglement in repeater-based long-distance quantum networks.Comment: 10 pages including appendix, 5 figure
Cavity Carving of Atomic Bell States
We demonstrate entanglement generation of two neutral atoms trapped inside an
optical cavity. Entanglement is created from initially separable two-atom
states through carving with weak photon pulses reflected from the cavity. A
polarization rotation of the photons heralds the entanglement. We show the
successful implementation of two different protocols and the generation of all
four Bell states with a maximum fidelity of (90+-2)%. The protocol works for
any distance between cavity-coupled atoms, and no individual addressing is
required. Our result constitutes an important step towards applications in
quantum networks, e.g. for entanglement swapping in a quantum repeater.Comment: 9 pages, 7 figures including Supplemen
Deterministic creation of entangled atom-light Schr\"odinger-cat states
Quantum physics allows for entanglement between microscopic and macroscopic
objects, described by discrete and continuous variables, respectively. As in
Schr\"odinger's famous cat gedanken experiment, a box enclosing the objects can
keep the entanglement alive. For applications in quantum information
processing, however, it is essential to access the objects and manipulate them
with suitable quantum tools. Here we reach this goal and deterministically
generate entangled light-matter states by reflecting a coherent light pulse
with up to four photons on average from an optical cavity containing one atom.
The quantum light propagates freely and reaches a remote receiver for quantum
state tomography. We produce a plethora of quantum states and observe
negative-valued Wigner functions, a characteristic sign of non-classicality. As
a first application, we demonstrate a quantum-logic gate between an atom and a
light pulse, with the photonic qubit encoded in the phase of the light field.Comment: includes Methods and Supplementary Informatio
Detecting an Itinerant Optical Photon Twice without Destroying It
Nondestructive quantum measurements are central for quantum physics
applications ranging from quantum sensing to quantum computing and quantum
communication. Employing the toolbox of cavity quantum electrodynamics, we here
concatenate two identical nondestructive photon detectors to repeatedly detect
and track a single photon propagating through a long optical
fiber. By demonstrating that the combined signal-to-noise ratio of the two
detectors surpasses each single one by about two orders of magnitude, we
experimentally verify a key practical benefit of cascaded non-demolition
detectors compared to conventional absorbing devices.Comment: 8 pages, 6 figure