1,276 research outputs found
Committee-Based Sample Selection for Probabilistic Classifiers
In many real-world learning tasks, it is expensive to acquire a sufficient
number of labeled examples for training. This paper investigates methods for
reducing annotation cost by `sample selection'. In this approach, during
training the learning program examines many unlabeled examples and selects for
labeling only those that are most informative at each stage. This avoids
redundantly labeling examples that contribute little new information. Our work
follows on previous research on Query By Committee, extending the
committee-based paradigm to the context of probabilistic classification. We
describe a family of empirical methods for committee-based sample selection in
probabilistic classification models, which evaluate the informativeness of an
example by measuring the degree of disagreement between several model variants.
These variants (the committee) are drawn randomly from a probability
distribution conditioned by the training set labeled so far. The method was
applied to the real-world natural language processing task of stochastic
part-of-speech tagging. We find that all variants of the method achieve a
significant reduction in annotation cost, although their computational
efficiency differs. In particular, the simplest variant, a two member committee
with no parameters to tune, gives excellent results. We also show that sample
selection yields a significant reduction in the size of the model used by the
tagger
Evolution of a bosonic mode across the superconducting dome in the high-Tc cuprate Pr(2-x)Ce(x)CuO(4-{\delta})
We report a detailed spectroscopic study of the electron doped cuprate
superconductor Pr(2-x)Ce(x)CuO(4-{\delta}) using point contact junctions for
x=0.125(underdoped), x=0.15(optimally doped) and x=0.17(overdoped). From our
conductance measurements we are able to identify bosonic resonances for each
doping. These excitations disappear above the critical temperature, and above
the critical magnetic field. We find that the energy of the bosonic excitations
decreases with doping, which excludes lattice vibrations as the paring glue. We
conclude that the bosonic mediator for these cuprates is more likely to be spin
excitations.Comment: 4 page
SciRecSys: A Recommendation System for Scientific Publication by Discovering Keyword Relationships
In this work, we propose a new approach for discovering various relationships
among keywords over the scientific publications based on a Markov Chain model.
It is an important problem since keywords are the basic elements for
representing abstract objects such as documents, user profiles, topics and many
things else. Our model is very effective since it combines four important
factors in scientific publications: content, publicity, impact and randomness.
Particularly, a recommendation system (called SciRecSys) has been presented to
support users to efficiently find out relevant articles
Local and macroscopic tunneling spectroscopy of Y(1-x)CaxBa2Cu3O(7-d) films: evidence for a doping dependent is or idxy component in the order parameter
Tunneling spectroscopy of epitaxial (110) Y1-xCaxBa2Cu3O7-d films reveals a
doping dependent transition from pure d(x2-y2) to d(x2-y2)+is or d(x2-y2)+idxy
order parameter. The subdominant (is or idxy) component manifests itself in a
splitting of the zero bias conductance peak and the appearance of subgap
structures. The splitting is seen in the overdoped samples, increases
systematically with doping, and is found to be an inherent property of the
overdoped films. It was observed in both local tunnel junctions, using scanning
tunneling microscopy (STM), and in macroscopic planar junctions, for films
prepared by either RF sputtering or laser ablation. The STM measurements
exhibit fairly uniform splitting size in [110] oriented areas on the order of
10 nm2 but vary from area to area, indicating some doping inhomogeneity. U and
V-shaped gaps were also observed, with good correspondence to the local
faceting, a manifestation of the dominant d-wave order parameter
Enhanced Non-linear Response by Manipulating the Dirac Point in the (111) LaTiO/SrTiO Interface
Tunable spin-orbit interaction (SOI) is an important feature for future
spin-based devices. In the presence of a magnetic field, SOI induces an
asymmetry in the energy bands, which can produce non-linear transport effects
(). Here, we focus on such effects to study the role of SOI in the
(111) LaTiO/SrTiO interface. This system is a convenient platform for
understanding the role of SOI since it exhibits a single-band Hall-response
through the entire gate-voltage range studied. We report a pronounced rise in
the non-linear resistance at a critical in-plane field . This rise
disappears with a small out-of-plane field. We explain these results by
considering the location of the Dirac point formed at the crossing of the
spin-split energy bands. An in-plane magnetic field pushes this point outside
of the Fermi surface, and consequently changes the symmetry of the Fermi
contours and intensifies the non-linear transport. An out-of-plane magnetic
field opens a gap at the Dirac point, thereby significantly diminishing the
non-linear effects. We propose that magnetoresistance effects previously
reported in interfaces with SOI could be comprehended within our suggested
scenario
First Passage Time in a Two-Layer System
As a first step in the first passage problem for passive tracer in stratified
porous media, we consider the case of a two-dimensional system consisting of
two layers with different convection velocities. Using a lattice generating
function formalism and a variety of analytic and numerical techniques, we
calculate the asymptotic behavior of the first passage time probability
distribution. We show analytically that the asymptotic distribution is a simple
exponential in time for any choice of the velocities. The decay constant is
given in terms of the largest eigenvalue of an operator related to a half-space
Green's function. For the anti-symmetric case of opposite velocities in the
layers, we show that the decay constant for system length crosses over from
behavior in diffusive limit to behavior in the convective
regime, where the crossover length is given in terms of the velocities.
We also have formulated a general self-consistency relation, from which we have
developed a recursive approach which is useful for studying the short time
behavior.Comment: LaTeX, 28 pages, 7 figures not include
- …