14 research outputs found

    Surface Aligned Main-Chain Liquid Crystalline Elastomers: Tailored Properties by the Choice of Amine Chain Extenders

    No full text
    A promising way to induce shape transformation in soft materials is via spatial variation in the orientation of the alignment of liquid crystalline elastomers (LCEs). Here, we improve the nascent thermomechanial shape transformation in main-chain LCEs prepared via aza-Michael addition reactions. Specifically, increasing the alkyl length in the <i>n</i>-alkylamine chain extender effectively reduces the actuation temperature by destabilizing the nematic phase as well as reduces the glass transition temperature (<i>T</i><sub>g</sub>) by increasing the free volume. In addition, incorporating a hydroxyl end-group in the amine chain extender (i.e., <i>n</i>-alkanolamine) increases the actuation strain and improves the film quality by preventing side-chain aggregates of <i>n</i>-alkylamine-functionalized LCEs. Interestingly, uniaxially aligned <i>n</i>-alkanolamine-functionalized LCEs exhibit an unprecedentedly large elongation and an enhanced toughness even along the loading direction likely due to hydrogen bonding between chains. Thus, our study highlights that the choice of amine chain extender during LCEs synthesis can be an efficient strategy to tailor the properties as well as to provide a new functionality in the LCEs which may expand their range of applications in shape morphing devices, smart coatings, and dynamic substrates

    Pseudo-rodlike molecules with hockey-stick-shaped mesogen

    No full text
    <p>Hockey-stick-shaped molecules were newly synthesised to obtain pseudo-rodlike molecules. The designed molecules consist of a polar terminal ring (i.e. 2,3,4-, 2,4,6- or 3,4,5-trifluorophenyl group), a rigid middle block (i.e. four rings with aligned ester linkages) and a flexible terminal chain (i.e. dodecyloxy group). We found that the compounds with 2,3,4- and 3,4,5-trifluorophenyl groups formed a smectic A mesophase with head-to-head bi-layer building blocks, whereas the compound with 2,4,6-trifluorophenyl group formed a nematic mesophase. This might be concerned with the behaviour of pseudo-rodlike molecules</p

    Unique Monotropic Phase Transition Behaviors of a Butterfly-Shaped Diphenylpyrimidine Molecule

    No full text
    The physical properties of two-dimensional disc-shaped aromatic carbon molecules strongly depend on the molecular packing structures. A butterfly-shaped diphenylpyrimidine molecule (DPP-6C12) was synthesized by covalently attaching two tridodecyl benzoate tails (6C12) at the both sides of the diphenylpyrimidine (DPP) moiety. Unique phase transition behaviors of DPP-6C12 and their origins were investigated with the combined techniques of thermal, scattering, spectroscopic, and microscopic analyses. On the basis of the experimental results and analyses, it was realized that a butterfly-shaped DPP-6C12 formed three ordered phases: a plastic crystal phase (PK), a crystal phase (K), and a liquid crystal phase (Φ). By breaking the molecular symmetry and coplanarity of DPP-6C12, peculiar monotropic phase transition behaviors were observed. The stable Φ mesophase was formed either by a slow heating above the metastable PK phase or by an isothermal annealing between <i>T</i><sub>Φ</sub> and <i>T</i><sub>K</sub>. The stable K phase was only formed by a slow heating from the preordered Φ mesophase, and the formation of the K phase directly from the isotropic state (I) was forbidden because the nucleation barrier from I to K was too high to be overcome via thermal annealing

    Heat Transfer Organic Materials: Robust Polymer Films with the Outstanding Thermal Conductivity Fabricated by the Photopolymerization of Uniaxially Oriented Reactive Discogens

    No full text
    For the development of advanced heat transfer organic materials (HTOMs) with excellent thermal conductivities, triphenylene-based reactive discogens, 2,3,6,7,10,11-hexakis­(but-3-enyloxy)­triphenylene (HABET) and 4,4′,4″,4‴,4⁗,4⁗′-(triphenylene-2,3,6,7,10,11-hexaylhexakis­(oxy))­hexakis­(butane-1-thiol) (THBT), were synthesized as discotic liquid crystal (DLC) monomers and cross-linkers, respectively. A temperature–composition phase diagram of HABET-THBT mixtures was first established based on their thermal and microscopic analyses. From the experimental results, it was realized that the thermal conductivity of DLC HTOM was strongly affected by the molecular organizations on a macroscopic length scale. Macroscopic orientation of self-assembled columns in DLC HTOMs was effectively achieved under the rotating magnetic fields and successfully stabilized by the photopolymerization. The DLC HTOM polymer-stabilized at the LC phase exhibited the remarkable thermal conductivity above 1 W/mK. When the DLC HTOM was macroscopically oriented, the thermal conductivity was estimated to be 3 W/mK along the in-plane direction of DLC molecule. The outstanding thermal conductivity of DLC HTOM should be originated not only from the high content of two-dimensional aromatic discogens but also from the macroscopically oriented and self-assembled DLC. The newly developed DLC HTOM with an outstanding thermal conductivity as well as with an excellent mechanical sustainability can be applied as directional heat dissipating materials in electronic and display devices

    Photoresponsive Carbohydrate-based Giant Surfactants: Automatic Vertical Alignment of Nematic Liquid Crystal for the Remote-Controllable Optical Device

    No full text
    Photoresponsive carbohydrate-based giant surfactants (abbreviated as CELA<i><sub>n</sub></i>D-OH) were specifically designed and synthesized for the automatic vertical alignment (VA) layer of nematic (N) liquid crystal (LC), which can be applied for the fabrication of remote-controllable optical devices. Without the conventional polymer-based LC alignment process, a perfect VA layer was automatically constructed by directly adding the 0.1 wt % CELA<sub>1</sub>D-OH in the N-LC media. The programmed CELA<sub>1</sub>D-OH giant surfactants in the N-LC media gradually diffused onto the substrates of LC cell and self-assembled to the expanded monolayer structure, which can provide enough empty spaces for N-LC molecules to crawl into the empty zones for the construction of VA layer. On the other hand, the CELA<sub>3</sub>D-OH giant surfactants forming the condensed monolayer structure on the substrates exhibited a planar alignment (PA) rather than a VA. Upon tuning the wavelength of light, the N-LC alignments were reversibly switched between VA and PA in the remote-controllable LC optical devices. Based on the experimental results, it was realized that understanding the interactions between N-LC molecules and amphiphilic giant surfactants is critical to design the suitable materials for the automatic LC alignment

    Photopolymerization of Reactive Amphiphiles: Automatic and Robust Vertical Alignment Layers of Liquid Crystals with a Strong Surface Anchoring Energy

    No full text
    A photopolymerizable itaconic acid-based amphiphile (abbreviated as Ita3C<sub>12</sub>) consisting of a hydrophilic carboxylic acid, three alkyl tails, and a reactive vinyl function was newly designed and synthesized for the formation of automatic and robust vertical alignment (VA) layer of nematic liquid crystals (NLC). Since a hydrophilic carboxylic acid was chemically attached to the end of Ita3C<sub>12</sub>, the Ita3C<sub>12</sub> amphiphiles initially dissolved in the host NLC medium were migrated toward the substrates for the construction of VA layer of NLC. The alkyl tails of Ita3C<sub>12</sub> in the VA layer directly interacted with host NLC molecules and made them to automatically align vertically. Because of the reactive vinyl functions of Ita3C<sub>12</sub> amphiphiles, it was possible to stabilize the automatic VA layer by the photopolymerization with methacryl polyhedral oligomeric silsesquioxane (MAPOSS) cross-linkers. The polymer-stabilized robust Ita3C<sub>12</sub> VA layer exhibited a strong surface anchoring energy without generating any light scatterings. The automatic fabrication of robust LC alignment layers can allow us to reduce the manufacturing cost and to open new doors for electro-optical applications

    Azobenzene Molecular Machine: Light-Induced Wringing Gel Fabricated from Asymmetric Macrogelator

    No full text
    To develop light-triggered wringing gels, an asymmetric macrogelator (1AZ3BP) was newly synthesized by the chemically bridging a photoisomerizable azobenzene (1AZ) molecular machine and a biphenyl-based (3BP) dendron with a 1,4-phenylenediformamide connector. 1AZ3BP was self-assembled into a layered superstructure in the bulk state, but 1AZ3BP formed a three-dimensional (3D) network organogel in solution. Upon irradiating UV light onto the 3D network organogel, the solvent of the organogel was squeezed and the 3D network was converted to the layered morphology. It was realized that the metastable 3D network organogels were fabricated mainly due to the nanophase separation in solution. UV isomerization of 1AZ3BP provided sufficient molecular mobility to form strong hydrogen bonds for the construction of the stable layered superstructure. The light-triggered wringing gels can be smartly applied in remote-controlled generators, liquid storages, and sensors

    Construction of Polymer-Stabilized Automatic MultiDomain Vertical Molecular Alignment Layers with Pretilt Angles by Photopolymerizing Dendritic Monomers under Electric Fields

    No full text
    The synthesized itaconic acid-based dendritic amphiphile (Ita3C<sub>12</sub>) monomers and the methacryl polyhedral oligomeric silsesquioxane (MAPOSS) cross-linkers were directly introduced for the construction of automatic vertical alignment (auto-VA) layers in the host nematic liquid crystal (NLC) medium. The auto-VA layer can be stabilized by irradiating UV light. For the automatic fabrication of a polymer-stabilized multidomain VA (PS auto-MDVA) layer with a pretilt angle, Ita3C<sub>12</sub> and MAPOSS were photopolymerized under the electric field by irradiating UV light on the multidomain electrode cell. Mainly because of the pretilted NLC at zero voltage, the electro-optic properties of the PS auto-MDVA cell were dramatically improved. From the morphological observations combined with surface chemical analyses, it was found that various sizes of protrusions on the solid substrates were automatically constructed by the two-step mechanisms. We demonstrated the PS auto-MDVA cell with the enhancement of electro-optic properties as a single-step process and investigated how the protrusions were automatically developed during the polymer stabilization

    Free-Standing and Circular-Polarizing Chirophotonic Crystal Reflectors: Photopolymerization of Helical Nanostructures

    No full text
    The preparation of materials exhibiting structural colors has been intensively studied in biomimetic science and technology. Utilizing a newly synthesized cholesteric liquid-crystal (CLC) monomer (abbreviated as BP<sub>1</sub>CRM), we have prepared CLC films. Photoinitiated copolymerization of this monomer with a common achiral liquid-crystalline monomer produced free-standing films with homogeneous and nanoscale pitch distributions. Employing the thermal sensitivity of the CLC monomer, chirophotonic crystal reflectors were prepared exhibiting a range of colors. The free-standing and circular-polarizing chirophotonic crystal films maintain excellent thermal, mechanical, and chemical stabilities, and the composition can readily be applied as polarized optical films and smart paints

    Pyrene-Based Asymmetric Supramolecule: Kinetically Controlled Polymorphic Superstructures by Molecular Self-Assembly

    No full text
    To understand the kinetically controlled polymorphic superstructures of asymmetric supramolecules, a pyrene-based asymmetric supramolecule (abbreviated as Py3M) was newly synthesized by connecting two pyrene headgroups (Py) to a biphenyl-based dendritic tail (3M) with an iso­phthala­mide connector. On the basis of thermal, microscopic, spectroscopic, and scattering results, it was realized that Py3M exhibited the monotropic phase transition between a stable crystalline phase (K1) and a metastable crystalline phase (K2). This monotropic phase transition behavior was mainly originated from the competitions of intra- and intermolecular interactions (π–π interactions and hydrogen bonds) as well as from the nanophase separations. From the two-dimensional (2D) wide-angle X-ray diffraction patterns and transmission electron microscopy images of the self-assembled Py3M superstructures, it was found that Py3M formed two synclinically tilted crystalline superstructures: the 6.75 and 4.4 nm periodicities of layered structures for K1 and K2 phases, respectively. The stable K1 phase was predominantly induced by the π–π interactions between pyrenes, while the intermolecular hydrogen bonds between iso­phthala­mides were the main driving forces for the formation of the metastable K2 phase. Ultraviolet–visible and photoluminescence experiments indicated that the photophysical properties of Py3M were directly related to their molecular packing superstructures
    corecore