178 research outputs found
Entanglement Entropy in Non-Relativistic Field Theories
We calculate entanglement entropy in a non-relativistic field theory
described by the Schr\"odinger operator. We demonstrate that the entropy is
characterized by i) the area law and ii) UV divergences that are identical to
those in the relativistic field theory. These observations are further
supported by a holographic consideration. We use the non-relativistic symmetry
and completely specify entanglement entropy in large class of non-relativistic
theories described by the field operators polynomial in derivatives. We suggest
that the area law of the entropy can be tested in experiments with condensed
matter systems such as liquid helium.Comment: 4 pages; v2: discussion of interacting fields include
Remarks on effective action and entanglement entropy of Maxwell field in generic gauge
We analyze the dependence of the effective action and the entanglement
entropy in the Maxwell theory on the gauge fixing parameter in
dimensions. For a generic value of the corresponding vector operator is
nonminimal. The operator can be diagonalized in terms of the transverse and
longitudinal modes. Using this factorization we obtain an expression for the
heat kernel coefficients of the nonminimal operator in terms of the
coefficients of two minimal Beltrami-Laplace operators acting on 0- and
1-forms. This expression agrees with an earlier result by Gilkey et al. Working
in a regularization scheme with the dimensionful UV regulators we introduce
three different regulators: for transverse, longitudinal and ghost modes,
respectively. We then show that the effective action and the entanglement
entropy do not depend on the gauge fixing parameter provided the certain
(-dependent) relations are imposed on the regulators. Comparing the
entanglement entropy with the black hole entropy expressed in terms of the
induced Newton's constant we conclude that their difference, the so-called
Kabat's contact term, does not depend on the gauge fixing parameter . We
consider this as an indication of gauge invariance of the contact term.Comment: 15 pages; v2: typos in eqs. (31), (32), (34), (36) corrected;
discussion in section 6 expande
Logarithmic correction to BH entropy as Noether charge
We consider the role of the type-A trace anomaly in static black hole
solutions to semiclassical Einstein equation in four dimensions. Via Wald's
Noether charge formalism, we compute the contribution to the entropy coming
from the anomaly induced effective action and unveil a logarithmic correction
to the Bekenstein-Hawking area law.
The corrected entropy is given by a seemingly universal formula involving the
coefficient of the type-A trace anomaly, the Euler characteristic of the
horizon and the value at the horizon of the solution to the uniformization
problem for Q-curvature. Two instances are examined in detail: Schwarzschild
and a four-dimensional massless topological black hole. We also find agreement
with the logarithmic correction due to one-loop contribution of conformal
fields in the Schwarzschild background.Comment: 14 pages, JHEP styl
On Classical Equivalence Between Noncritical and Einstein Gravity : The AdS/CFT Perspectives
We find that noncritical gravity, a special class of higher derivative
gravity, is classically equivalent to Einstein gravity at the full nonlinear
level. We obtain the viscosity-to-entropy ratio and the second order transport
coefficients of the dual fluid of noncritical gravity to all orders in the
coupling of higher derivative terms. We also compute the holographic
entanglement entropy in the dual CFT of noncritical gravity. All these results
confirm the nonlinear equivalence between noncritical gravity and Einstein
gravity at the classical level.Comment: 19 pages, no figure
C T for conformal higher spin fields from partition function on conically deformed sphere
Strong subadditivity and the covariant holographic entanglement entropy formula
Headrick and Takayanagi showed that the Ryu-Takayanagi holographic
entanglement entropy formula generally obeys the strong subadditivity (SSA)
inequality, a fundamental property of entropy. However, the Ryu-Takayanagi
formula only applies when the bulk spacetime is static. It is not known whether
the covariant generalization proposed by Hubeny, Rangamani, and Takayanagi
(HRT) also obeys SSA. We investigate this question in three-dimensional
AdS-Vaidya spacetimes, finding that SSA is obeyed as long as the bulk spacetime
satisfies the null energy condition. This provides strong support for the
validity of the HRT formula.Comment: 38 page
Entanglement entropy of black holes
The entanglement entropy is a fundamental quantity which characterizes the
correlations between sub-systems in a larger quantum-mechanical system. For two
sub-systems separated by a surface the entanglement entropy is proportional to
the area of the surface and depends on the UV cutoff which regulates the
short-distance correlations. The geometrical nature of the entanglement entropy
calculation is particularly intriguing when applied to black holes when the
entangling surface is the black hole horizon. I review a variety of aspects of
this calculation: the useful mathematical tools such as the geometry of spaces
with conical singularities and the heat kernel method, the UV divergences in
the entropy and their renormalization, the logarithmic terms in the
entanglement entropy in 4 and 6 dimensions and their relation to the conformal
anomalies. The focus in the review is on the systematic use of the conical
singularity method. The relations to other known approaches such as 't Hooft's
brick wall model and the Euclidean path integral in the optical metric are
discussed in detail. The puzzling behavior of the entanglement entropy due to
fields which non-minimally couple to gravity is emphasized. The holographic
description of the entanglement entropy of the black hole horizon is
illustrated on the two- and four-dimensional examples. Finally, I examine the
possibility to interpret the Bekenstein-Hawking entropy entirely as the
entanglement entropy.Comment: 89 pages; an invited review to be published in Living Reviews in
Relativit
- …